Mineralogy and mineral chemistry of quartz-dioritic dykes of Sungun Mo- Cu porphyry deposit (NW Iran)

Abstract

The study area is located in NW of Iran, East-Azarbaidjan Province in north Varzeghan. Plagioclase, amphibole and biotite are the major minerals and sphene, apatite, and quartz are accessory minerals. The texture of these dykes are porphyrytic with fine to medium matrix. Mineral chemistry analysis revealed that the composition of Plagioclase varies from andesine to oligoclase and the biotite varies from annite to siderophyllite. Amphiboles are principally of calcic-type and show magnesio-hornblende composition. These amphiboles are related to subduction zones and are concordance with active continental margins related to subduction. Dykes thermo-barometry, using total Al3+ content in amphibole, shows that amphibole in quartz-dioritic dykes were crystallized at 800˚C and 4±0.5 kbars. Biotite thermometry in late dykes shows the crystallization temperature of 700 to 750 ˚C. High oxygen fugacity (-10 to -17) imply an oxidation magma and its formation in convergent plates. Based on magma character and nature determining diagrams according to chemical composition of amphibole, studied samples lie in   sub-alkaline to alkaline magma series.  Based on tectono-magmatic diagrams, amphiboles of the area lie in the field of suprasubduction related amphiboles. According to the amount (less than 1.5) AlIV, all of studied amphiboles placed in active continental margins related to subduction field.

Keywords


[1] Sillitoe R.H., "Porphyry Copper Systems", Society of Economic Geologists, Inc. Economic Geology, v. 105(2010) 3–41.

[2] Mehrpartou M., "Contributions to the geology, geochemistry, ore genesis and fluid inclusion investigations on Sungun Cu–Mo porphyry deposit, NW of Iran", PhD Dissertation, University of Hamburg, Germany, (1993) 245.

[3] Etminan H., "The discovery of Porphyry Copper-Molybdenum mineralization adjacent to Songun village in the northwest of Ahar (Eastern Azerbaijian, Iran) and a proposed program for its detailed exploration", Geological Survey of Iran (1977).

[4] امامی ه.، باباخانی ع.، "مطالعات زمین شناسی، پترولوژی و لیتوژئوشیمی کانسار مس و مولیبدن سونگون"، شرکت خدمات اکتشافی کشور (1370).

[5] قادری م.، "بررسی زمین شناسی اقتصادی کانسار مس سونگون"، پایان نامه کارشناسی ارشد، دانشگاه شهید بهشتی (1370).

[6] ایزدیار ج.، "مطالعه پتروگرافی و پترولوژی سنگ‌های آذرین ناحیه معدنی سونگون"، پایان نامه کارشناسی ارشد، دانشگاه شهید بهشتی (1374).

[7]صفری ا.، "منشاء کانی سازی و آلتراسیون در کانسار پورفیری مس – مولیبدن سونگون"، پایان نامه کارشناسی ارشد، دانشگاه شهید بهشتی (1374).

[8] فیروزی ب.، "مطالعه هاله های آلتراسیون و زوناسیون عمودی در کانسار تیپ اسکارن پورفیری مس-مولیبدن سونگون" ، پایانامه کارشناسی ارشد، دانشکده علوم، دانشگاه تربیت معلم (1376).

[9] ضیایی، "روش‌های لیتوژئوشیمیایی اکتشافی و تخمین مس پورفیری سونگون (شمالغرب ایران) "، پایاننامه کارشناسی ارشد (1995).

[10] Hezarkhani A., "Physicochemical Controls on Alteration and Copper Mineralization in the Sungun Porphyry Copper Deposit, Iran", (1997).

[11] Calagari A. A., "Stable isotope (S, O, H and C) studies of the phyllic and potassic–phyllic alteration zones of the porphyry copper deposit at Sungun, East Azarbaidjan, Iran", Journal of Asian Earth Sciences, v. 21, no. 7(2003b) 767-780.

[12] Calagari A. A., Hosseinzadeh G., "The mineralogy of copper-bearing skarn to the east of the Sungun-Chay river, East-Azarbaidjan, Iran", Journal of Asian Earth Sciences, v. 28, no. 4 (2006) 423-438.

[13]حامدی ا.، "بررسی ساختاری‌های کانسار مس پورفیری سونگون با نگرشی خاص بر مکانیزم تزریق و توزیع دایکها"، پایان نامه کارشناسی ارشد، دانشگاه تبریز (1386).

[14] حسن پور ش.، "متالوژنی و کانی زایی کانسارهای مس و طلا در زون ارسباران (آذربایجان شرقی" (، رساله دکتری، دانشکده علوم زمین، دانشگاه شهید بهشتی (1389).

[15] علوی غ.، "بررسی کانسارهای اسکارنی حاشیه باتولیت شیورداغ و مقایسه آنها با اسکارن پورفیری سونگون"، پایان نامه دکتری، دانشگاه تبریز (1392) 309.

[16] Aghazadeh M., Hou Z., Badrzadeh B., Zhou L., "Temporal–spatial distribution and tectonic setting of porphyry copper deposits in Iran: Constraints from zircon U–Pb and molybdenite Re–Os geochronology", Journal Ore Geology Reviews 70 (2015) 385–406.

[17] شرکت پارس اولنگ.، "نقشه زمین شناسی 2000/1 و 5000/1 اسکارن و معدن مس سونگون"، (1392).

[18] Leake B.E., Woolley A.R., Arps C.E.S., Birch W.D., Gilbert M.C., Grice J.D., Hawthorne F.C., Kato A., Kisch H.J., Krivovichev V.G., Linthout K., Larid J., "Nomenclature of amphiboles: report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names", American Mineralogist, 82 (1997) 1019–1037.

[19] Leake B.E., "Nomenclature of amphiboles", Mineralogical Magazine, 42 (1978) 553–563.

[20] Wones D.R., Eugster H.P., "Stability of biotite: experiment, theory, and application", American Mineralogist 50 (1965) 1228-1272.

[21] Nachit H., Ibhi A., Abia E.H., Ohoud M.B., "Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites. Geomaterials (Mineralogy) ", Copmtes Rendus, Geoscience, 337 (2005) 1415–1420.

[22] Dymek R.F., "Titanium, aluminum and interlayer cation substitutions in biotite from high-grade gneisses, west Greenland", American Mineralogist, 68 (1983) 880–899.

[23] قدسی م.، بومری م.، باقری س.، ناکاشیما ک.، "بررسی شیمی کانی بیوتیت در گرانیتوئید مکسان"، جنوب شرق ایران. مجله بلور شناسی و کانی شناسی ایران ، سال بیست و چهارم، شماره1 (1395) .

[24] Zhu C., Sverjensky D.A., "Partitioning of FCl- OH between biotite and apatite", Geochim Cosmo Chim Acta, 56(1992) 3435-3467.

[25] Webster J.D., "Partitioning of Cl between magmatic hydrothermal fluids and highly evolved Granitic magmas", Geological Society of America, Special Publication (1990) 246.

[26] Monuz J.L., Ludington S.D., "Fluoride hydroxyl exchange in biotite", American Journal of Science 274 (1974) 396-413.

[27] Monuz J.L., "F-OH and CI-OH exchange in mica with application to hydrothermal ore deposits", Reviews in Mineralogy13 (1984) 469-493.

[28] Rieder M., Cavazzini G., YakonovY.D., Frank- kanetskii V.A., Gottardi G., Guggenheim S., Koval P.V., Muller, G., Neiva A.M.R., Radoslovich E.W., Robert J.L., Sassi F.P., Takeda H., Weiss Z., Wones D.R., "Nomenclature of the micas", Canadian Mineralogist 36 (1998) 905-912.

[29] Foster M.D., "Interpretation of the composition of trioctahedral micas", United States Geological Survey Professional Paper 354-B (1960) 11–49.

[30] Coltorto M., Bondaiman C., Faccini B., Geogoire M., O’Reilly S.Y., Powell W., "Amphibol from suprasubduction and intraplate lithospheric mantle", Lithos, 99 (2007) 68-84.

[31] Molina J., Scarrow J., Montero P. G., Bea F., "High-Ti amphibole as a petrogenetic indicator of magma chemistry: evidence for mildly alkali-hybrid melts during evolution of Variscan basic-ultrabasic magmatism of central Iberia", Contribution to Mineralogy and Petrology 158 (2009) 69-98.

[32] Miyashiro A., "Volcanic rock series in island arc and active continental margins", American Journal of Science, 247 (1974) 321-355.

[33] Ghent E.D.J., Nicholls P.S., Simony J.H., Sevigny M.Z., "Hornblende barometry of the Nelson batholiths, southeastern British Columbia: Tectonic implication", Canadian Journal of Earth Sciences, 28 (1991) 1982-1991.

[34] Vyhnal C.R., McSween H.Y.Jr., "Hornblende Chemistry in southern Appalachian granitoids: Implication for aluminus hornblende thermobarometry and magmatic epidote stability", American Mineralogist 76, 176-188.

[35] Nachite H., "Contribution a l e´ tudeanalytique et experimental des biotites desgranitoids applications typologiques", These deDoctorat De L’ univesite´ de Bretagne accidental (1986) 236.

[36] Abdel–Rahman A. M., "Nature of biotites from alkaline, calc-alkaline and peraluminous magmas", Journal of Petrology 35(1994) 525-541.

[37] Nachit H., Razafimahefa N., Stussi J.M., Carron J.P., "Composition chimique des biotites et typologie magmatique des granitoides", Comptes Rendus Hebdomadaires de l’ Académie des Sciences, 301 (1985) 813–818.

[38] Hammarstrom J.M., Zen E-an., "Aluminum in hornblende: An empirical igneous geobarometer", American Mineralogist 71 (1986) 1297–1313.

[39] Hollister L.S., Grissom G.C., Peters E.K., Stowell H.H., Sisson V.B., "Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons", American Mineralogist 72 (1987) 231–239.

[40] Johnson M.C., Rutherford M.J., "Experimental calibration of the aluminum-in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks", Geology 17 (1998) 837–841.

[41] Schmidt M.W., "Amphibole composition in tonalite as a function of pressure: An experimental calibration of the Al-in-hornblende barometer", Contributions to Mineralogy and Petrology 110 (1992) 304–310.

[42] Holland T., Blundy J., "Non-ideal interactions in calcic amphiboles and their bearing on amphiboleplagioclase thermometry", Contributions to Mineralogy and Petrology 116 (1994) 433-447.

[43] Ernst W.G., Liu J., "Experimental phase-equilibrium study of Al- and Ti-contents of calcic amphibole in MORB: A semiquantitative barometer", American Mineralogist, 83 (1998) 952-969.

[44] Humphreys M.C.S., Edmonds M., Christopher T., Hards V., " Chlorine variations in the magma of Soufrière Hills Volcano, Montserrat: Insights from Cl in hornblende and melt inclusions", Geochimica et Cosmochimica Acta, 73 (2009) 5693-5708.

[45] Henry D.J., Guidotti C.V., Thomson J.A., "The Ti-saturation surface for low-to-medium pressure metapelitic biotite: Implications for Geothermometry and Ti-substitution Mechanisms", American Mineralogist 90 (2005) 316-328.

[46] Helmy H.M., Ahmed A.F., El Mahallawi M.M., Ali S.M., "Pressure, temperature and oxygen fugacity conditions of calc-alkaline granitoids, Eastern Desert of Egypt, and tectonic implications", Journal of African Earth Sciences 38 (2004) 255-268.

[47] Ewart A., "A review of the mineralogy and chemistry of Tertiary-Recent dacitic, latitic, rhyolitic, and related salic volcanic rocks. Trondhjemites, dacites, and related rocks", Elsevier Amsterdam (1979)13-132.

[48] Behrens H., Gaillard F., "Geochemical aspects of melts: volatiles and redox behavior", Elements 2 (2006) 275-280.

[49] Scaillet B., Evans B.W., "The 15 June 1991 eruption of Mount Pinatubo. I. Phase equilibria and preeruption P–T–fO2–fH2O conditions of the dacite magma", Journal of Petrology 40(1999) 381-411.

[50] Anderson J. L., Smith D. R., "The effects of temperature and ƒ02 on the Al in hornblende barometer", American Mineralogist 80 (1995)549-559.

[51] Wones D.R., "Significance of the assemblage titanite + magnetite + quartz in granitic rocks ", American Mineralogist 74(1989)744-749.