Geochemistry and mass changes at the Mombi Bauxite Deposit, SW Iran

Abstract

The Mombi bauxite deposit is located about 160Km northwest of Dehdasht in the Zagros Simply Folded Belt. The bauxite deposit exhibits an ooilitic and pisolitic texture. It contains higher amount of boehmite than those of diaspore, hematite, kaolinite, and anatase. This study uses the geochemistry of immobile elements in order to calculate the mass changes that took placed during weathering and bauxitization. The results reveal that elements such as Si, Fe, Mg, P, K, Ba, Sr and Zn are depleted, while Al, Zr, V, Cr, Ni, Ga, Y and LREEs indicate positive mass changes during the weathering and bauxitization processes. In addition, Nb, Hf, Ta, Rb, Cs, U and HRRE exhibit little changes, suggesting relatively immobile features. Interelemental relationship analyses of the ores, by using R-mode factor analysis, revealed a number of key findings: (i) some low solubility elements were concentrated in detrital zircon (Zr), in anatase (Ti), and possibly in boehmite, hematite and detrital minerals (Ga) during the later stages of bauxitisation; (ii) Fe was concentrated during humid climatic conditions, whereas Al accumulated during dry conditions; (iii) similar and meaningful weightings for U and Th suggest that heavy minerals frequency would be locally important in controling the uranium behavior; (iv) distributions of LREEs and HREEs are controlled by the stability of the carrier complexes of REEs and the existence of REE-bearing mineral phases; and (v) (La/Yb)n ratio values suggest that little LREE/HREE fractionation occurred during bauxite formation and (La/Yb)n ratio fluctuations may also be indicative of fluctuations of pH in soil solution.

Keywords


[1] Liu X. F., Wang Q. F., Deng J., Zhang Q. Z., Sun S., Meng J., "Mineralogical and geochemical investigations of the Dajia Salento-type bauxite deposits, Western Guangxi", China. Journal of Geochemical Exploration, 105 (2010) 137–152.

[2] Karadag M. M., Kupeli S., Aryk F., Ayhan A., Zedef V., Doyen A., "Rare earth element (REE) geochemistry and genetic implications of the Mortas bauxite deposit (Seydisehir/Konya-Southern Turkey)", Chemie der Erde-Geochemistry, 69 (2009) 143–159.

[3] Bárdossy G., Aleva G. J. J., "Lateritic Bauxites: Developments", Economic Geology, 27. Elsevier, Amsterdam. 624p (1990).

[4] Zarasvandi A., Carranza E. J. M., Ellahi S. S., "Geological, geochemical, and mineralogical characteristics of the Mandan and Deh-now bauxite deposits, Zagros Fold Belt, Iran", Ore Geology Reviews, 48 (2012) 125–138.

[5] Zarasvandi A., Zamanian H., Hejazi E., "Immobile elements and mass changes geochemistry at Sar-Faryab bauxite deposit, Zagros Mountains, Iran", Journal of Geochemical Exploration, 107 (2010) 77–85.

[6] Bárdossy G., "Karst bauxites. Bauxite deposits on carbonate rocks. Developments in Economic Geology", 14. Elsevier, Amsterdam. 441p.

[7] Nasibpour H. R, "Geochemistry and genesis of the Hangam bauxite anomaly, Firouz-abad, Iran", M.Sc. thesis (in Persian), Shiraz University, 191 p (2000).

]8 [احیا ف.، لطفی م.، "رهیافتی ژئوشیمیایی و زمین آماری برای منشا نهشته‌های بوکسیت سرفاریاب، استان کهکیلویه و بویراحمد، جنوب باختر ایران"، مجله علوم زمین، شماره 74 (1388) صفحه 91-98.

[9] Zamanian H., Ahmadnejad F., Zarasvandi A., "Mineralogical and geochemical investigations of the Mombi Bauxite deposit, Zagros Mountains, Iran", Chemie der Erde-Geochemistry, DOI: 10.1016/j.chemer.2015.10.001.

[10] MacLean W. H., Kranidiotis P., "Immobile elements as monitors of mass transfer in hydrothermal alteration: Phelps Dodge massive sulfide deposit, Matagami", Quebec. Economic Geology, 82 (1987) 951–962.

[11] Maclean W. H., "Mass change calculations in altered rock series", Mineralium Deposita, 25 (1990) 44–49.

[12] Berberian M., King G. C. P., "Towards a paleogeography and tectonic evolutionof Iran", Canadian Journal of Earth Sciences, 18 (1990) 210–265.

[13] Alavi M., "Tectonics of the Zagros Orogenic belt of Iran", new data and interpretations. Tectonophysics, 229, 211–238.

[14] Alavi M., "Structures of the Zagros fold–thrust belt in Iran", American Journal of Science, 307 (2007) 1064–1095.

[15] Sepehr M., Cosgrove J. W., "Structural framework of the Zagros fold-thrust belt, Iran" Marine and Petroleum Geology, 21 (2004) 829–843.

[16] Alavi M., "Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution", American Journal of Science, 304 (2004) 1–20.

]17[ زراسوندی ع.، زمانیان ح.، حجازی الف.، منصور ع.، "بررسی تغییرات ژئوشیمیایی و جرم واحدهای محتلف بوکسیتی در کانسار بوکسیت سرفاریاب، استان کهگیلویه و بویر احمد با استفاده از رفتار ژئوشیمیایی عناصر Y، Zr، Ti و Al." مجله علوم زمین، شماره 75 (1389) صفحه 157-164.

]18[ گزارش شرکت مهندسین مشاور زرکوه اکتشاف.، "پی جویی بوکسیت-لاتریت و مواد نسوز در منطقه دهدشت (استان کهکیلویه و بویراحمد)"، به شماره 2315-300 (1386).

[19] Abedini A., Calagari A. A., "REE geochemical characteristics of titanium-rich bauxites: the Permian Kanigorgeh horizon, NW Iran", Turkish Journal of Earth Sciences, 23 (2014) 513-532.

[20] Nesbitt H. W., "Mobility and fractionation of rare elements during weathering of a granodiorite" Nature, 279, 206–210.

[21] Duzgoren-Aydin N. S., Aydin A., Malpas J., "Distribution of clay minerals along a weathered pyroclastic rock profile", Hong Kong. Catena, 50 (2002) 17–41.

[22] Mongelli G., Boni M., Buccione R., Sinisi R., "Geochemistry of the Apulian karst bauxites (southern Italy): Chemical fractionation and parental affinities", Ore Geology Reviews, 63 (2014) 9–21.

[23] Mameli P., Mongelli G., Oggiano G., Dinelli E., "Geological, geochemical and mineralogical features of some bauxite deposits from Nurra (Western Sardinia, Italy): insights on conditions of formation and parental affinity", International Journal of Earth Sciences, 96 (2007) 887–902.

[24] Mongelli G., Acquafredda P., "Ferruginous concretions in a Late Cretaceous karst bauxite: composition and conditions of formation.", Chemical Geology, 158 (1999) 315–320.

[25] Gu J., Huang Z., Fan H., Jin Z., Yan Z., Zhang J., "Mineralogy, geochemistry, and genesis of lateritic bauxite deposits in the Wuchuan–Zheng'an–Daozhen area, Northern Guizhou Province", China. Journal of Geochemical Exploration, 130, 44–59.

[26] Liu X. F., Wang Q. F., Feng Y. W., Li Z., Cai S. H., "Genesis of the Guangou karstic bauxite deposit in western Henan", China. Ore Geology Reviews, 55 (2013) 162–175.

[27] Brimhall G. H., Lewis X. J., Ague J. J., Detroit W. E., Hanpel J., Rix P., "Metal enrichment in bauxites by deposition of chemically mature aeolian dust", Nature, 333 (1988) 819–824.

[28] Esmaeily D., Rahimpour-Bonab H., Esna-Ashari A., Kananian A., "Petrography and geochemistry of the Jajarm Karst bauxite ore deposit, NE Iran: implications for source rock material and ore genesis", Turkish Journal of Earth Sciences, 19 (2010) 267–284.

[29] Dana J. D., "Manual of Mineralogy", John Wiley & Sons Inc. (2001) 583 pp.

[30] Nahon D., "Introduction to the Petrology of Soils and Chemical Weathering", Wiley, New York. 313p (1991).

[31] Brinkman R., "Ferrolysis, a hydromorphic soil forming process", Geoderma, 3 (1970) 199–206.

[32] Tardy, Y. and Nahon, D. B., 1985- Geochemistry of laterites. Stability of Al-goethite, Al-hematite and Fe3+ kaolinite in bauxites and ferricretes. An approach to themechanism of concretion formation. American Journal of Science, 285 (1970) 865–903.

]33[ شاهکرمی پ.، "زمین‌شناسی اقتصادی نهشته‌های بوکسیت در منطقه قلعه مومبی، استان کهگیلویه و بویر احمد"، پایان نامه کارشناسی ارشد، دانشگاه لرستان، ایران (1392) .

[34] Mongelli G., "Growth of hematite and boehmite in concretions from ancient Karst bauxite: clue for past climate" Catena, 50 (2002) 43–51.

[35] Farnham I. M., Johannesson K. H., Singh A. K., Hodge V. F., Stetzenbach K. J., "Factor analytical approaches for evaluating groundwater trace element chemistry data", Analytica Chimica Acta, 490 (2003) 123–138.

[36] Laveuf C., Cornu S., "A review on the potentiality of rare earth elements to trace pedogenetic processes", Geoderma, 154 (2009) 1–12.

[37] Ma J., Lehmann B., Du A., Zhang G., Ma D., Wang Y., Zeng M., Kerrich R., "Re–Os dating of polymetallic Ni–Mo–PGE–Au mineralization in Lower Cambrian black shales of South China and its geological significance", Economic Geology, 17 (2002) 1535–1547.

[38] Henderson P., "General geochemical properties and abundances of the rare earth elements. In: Henderson, P. (Ed.), Rare Earth Element Geochemistry", Developments in Geochemistry, 2. Elsevier, 32p (1984).

[39] Byrne R. H., Li B., "Comparative complexation behavior of the rare earths", Geochimica et Cosmochimica Acta, 59 (1995) 4575–4589.

[40] Sonke J. E., "Lanthanide-humic substances complexation. II.", Calibration of humic ion binding model V. Environmental Science and Technology, 40 (2006) 7481–7487.

[41] Lee J. H., Byrne R. H., "Rare earth element complexation by fluoride ions in aqueous solution", Journal of Solution Chemistry, 22 (1993) 751–766.

[42] Cantrell K. J., Byrne R. H., "Rare earth complexation by carbonate and oxalate ions", Geochimica et Cosmochimica Acta, 51 (1987) 597–605.

[43] Pourret O., Davranche M., Gruau M., Dia A., "Competition between humic acid and carbonates for rare earth elements complexation", Journal of Colloid and Interface Science, 305 (2007) 25–31.

[44] Pourret O., Gruau G., Dia A., Davranche M., Molénat J., "Colloidal control on the distribution of rare earth elements in shallow groundwaters", Aquatic Geochemistry, 16 (2010) 31–59.

[45] Huang C., Wang Y., "Removal of aluminosilicates from diasporic-bauxite by selective flocculation using sodium polyacrylate", Separation and Purification Technology, 59 (2008) 299–303.