Investigation on the mineral chemistry and the role of biotite total aluminum in detecting the type of mineralization in the intrusive bodies of Karaj-Taleghan axis

Abstract

The intrusive bodies of Karaj-Taleghan axis in Central Alborz constitute, intruded the pyroclastic rocks of Karaj Formation in the form of sill, lopolith, stock and plug with distict distribution. Based on microscopic studies, these bodies have similar lithological composition and include olivine gabbro, olivine monzodiorite, olivine monzonite, pyroxene monzonite with felsic dikes of syenite. The major minerals of these rocks are plagioclase, alkali feldspar, pyroxene, olivine and biotite. Biotite is one of the most prominent ferromagnesian mineral in the studied bodies. Compositionally, it is plotted between the field of annite and siderophylite. Most of these biotites are primarly magmatic and some are plotted in the field reequilibrated area. Based on the FeO*, MgO and Al2O3 binary and ternary diagrams, the studied biotites plot in the calc-alkaline orogenic field and crystallization temperature has been calculated between 640º to 770 ºC. Furthermore, the calculated pressure of biotite crystallization, based on Al barometer, is 0/27 to 2/58 KB (average1/06 KB). The total aluminum content of biotite in intrusive bodies at Karaj-Taleghan axis ranges from 2/25 to 3/01. Ziyaran plutonic complex shows good potential for iron-copper mineralization and Prachan and Shekarnab bodies show high potential for lead and zinc mineralization.

Keywords


[1] Uchida E., Endo S., Makino M., "Relationship Between Solidification Depth of Granitic Rocks and Formation of Hydrothermal Ore Deposits", Resource Geology, 57 (2007) 47–56.

[2] Deer W.A., Howie R.A., Zussman J., "An introduction to the rock-forming minerals", 2nd edition, Longman, Harlow (1992).

[3] Nachit H., Ibhi A., Abia E.H., Ohoud M.B., "Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites", Comptes Rendus Geoscience 337 (2005) 1415-1420.

[4] Buda G., Koller F., Kovacz J., Ulrych J., "Compositional variation of biotite from Variscan granitoids in central Europe: A statistical evaluation", Acta Mineralogica et Petrographica, 45/1 (2004) 21-37.

[5] Abdel-Rahman A.M., "Nature of biotites from alkaline, calc-alkaline and peraluminous magmas", Journal of petrology 35(2) (1994) 525-541.

[6] Putirka K.D., "Thermometers and barometers for volcanic systems", Reviews in Mineralogy and Geochemistry 69 (2008) 61–120.

[7] Annells, R.N., Arthurton, R.S., Bazley, R.A.B., Davies, R.G., Hamedi, M.A.R., and Rahimzadeh, F. "Geological map of Iran, Shakran sheet 6162", scale 1:100,000, Geological Survey of Iran (1977).

]8[ امینی ب.، "نقشه زمین‌شناسی تهران 1:100000"، انتشارات سازمان زمین‌شناسی کشور (1373).

]9[ رادفر ج.، "نقشه زمین‌شناسی قزوین 1:100000"، انتشارات سازمان زمین‌شناسی کشور (1372).

]10[ نوری خانکهدانی ک، "بررسی پترولوژیکی توده‌های مونزونیتی شمال دیزان (منطقه طالقان)"، رساله کارشناسی‌ارشد، دانشگاه شهید بهشتی (1375) 172 ص.

]11[ کشت‌کار ا.، قربانی م.، "مطالعه کلینوپیروکسن‌های موجود در توده‌های نفوذی محور کرج-طالقان (البرز مرکزی)" مجله بلورشناسی و کانی‌شناسی ایران، شماره دوم (1395)

ص 405-416.

]12[ کشت‌کار ا.، "پترولوژی و ژئوشیمی توده‌‌های نفوذی محور کرج-طالقان" رساله دکتری پترولوژی (1395)، دانشگاه شهید بهشتی، تهران، 324 صفحه.

[13] Spear J.A., "Micas in igneous rocks", In: Micas, Bailey, S.W., (ed); Mineralogical Society of America, Review in Mineralogy, 13 (1984) 299-356.

[14] Foster M. D., "Interpretation of the composition of trioctahedral micas", United States Geological Survey Professional Paper, 354-B (1960) 11-46.

[15] Nachit H., Razafimahefa N., Stussi J.M., Carron J.P.,"Composition chimique des biotites et typologie magmatique des granitoides", Comptes Rendus Hebdomadaires de 1, Académie des

Sciences 301(11) (1985) 813-818.

[16] Jiang Y.H., Jiang S.Y., Ling H.F., Zhou X.R., Rui X.J., Yang W.Z., "Petrology and geochemistry of shoshonitic plutons from the western Kunlun orogenic belt, Xinjiang, northwestern China: implications for granitoid genesis", Lithos 63 (2002) 165-187.

[17] Henry D.J., Guidotti C.V., Thomson J.A. "The Ti-saturation surface for low-to-medium pressure metapelitic biotite: Implications for Geothermometry and Ti-substitution Mechanisms", American Mineralogist, 90, (2005) 316-328.

[18] Hammarstrom J. M., Zen E., "Aluminum in hornblende: An empirical igneous geobarometer", American Mineralogist 71(1986) 1297-1313.

[19] Anderson J.L., Smith D.R., "The effects of temperature and fO2 on the Al-in-hornblende barometer", American Mineralogist 80 (1995) 549– 559.

[20] Johnson M.C., Rutherford M.J., "Experimental calibration of the aluminum-in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks" Geology17 (1989) 837–841.

[21] Thomas W., Ernst W.G., "The aluminum content of hornblende in calc-alkaline granitic rocks; a mineralogic barometer calibrated experimentally to 12 kbars, In: Spencer RJ, Chou I-M, (eds) Fluid–mineral interactions: a tribute to H.P. Eugster", The Geochemical Society, Special Publication, 2, (1990) 59–63.

]22[ رضوی م. ح.، مسعودی ف.، فرح‌خواه ن.، "شواهد کانی‌شناسی، بافتی و ژئوشیمیایی در تشخیص متاسوماتیسم پتاسیک در سیل بنیان سد کرج و تاثیر آن در سنگ‌های درونگیر" فصلنامه زمین‌شناسی ایران، بهار 1389.