توزیع کاتیونی و شاخص وارونگی در نانوفریت‌های اسپینلی چندجزئی AₓB0.5-xZn0.5Fe2O4 (A,B=Ni, Mn, Co) بر پایه‌ی تحلیل داده‌های پراش پرتو X

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه شیمی، دانشگاه پیام نور، تهران، ایران

2 گروه فیزیک، دانشکده علوم، دانشگاه گلستان، گرگان

10.22128/ijcm.2026.3123.1018

چکیده

در این پژوهش، نانوفریت‌های اسپینلی چندجزئی با ترکیب کلیAₓB0.5-xZn0.5Fe2O4  (A,B=Ni, Mn, Co) در سه مقدار جانشانی x= 0.0, 0.25, 0.5 به روش هم‌رسوبی شیمیایی سنتز و اثر جایگزینی متقابل یون‌های دوظرفیتی بر ساختار بلوری و توزیع کاتیونی بررسی شد. الگوهای پراش پرتوی ایکس (XRD) نشان دادند که همه نمونه‌ها دارای فاز خالص اسپینلی مکعبی هستند. با افزایش x، ثابت شبکه و اندازه نانوبلورک‌ها تغییرهای منظمی دارند که به اختلاف شعاع یونی و تغییر در چگونگی اشغال جایگاه‌های A و B نسبت داده می­شود. بر اساس تحلیل شدت نسبی قله‌های پراش و محاسبه­های نظری، درجه‌ی وارونگی (δ) در گستره‌ی 35/0 تا 45/0 تعیین شد که نشان‌دهنده‌ی ساختار نیمه‌وارون است. رفتار غیرخطی δ با افزایش x به رقابت میان تمایل یون‌های دوظرفیتی برای حضور در جایگاهB  و جابه‌جایی یون­های Fe3+ نسبت داده می­شود. نتایج بیانگر ارتباط یکپارچه میان ترکیب شیمیایی، ثابت شبکه و توزیع کاتیونی است. 

کلیدواژه‌ها


عنوان مقاله [English]

Cation distribution and inversion parameter in multicomponent spinel nanoferrites AₓB0.5-xZn0.5Fe2O4 (A,B=Ni, Mn, Co) based on XRD analysis

نویسندگان [English]

  • Maryam Abareshi 1
  • Hassan Khandan Fadafan 2
1 Department of Chemistry, Payame Noor University, Tehran, Iran
2 Department of Physics, Golestan University, Gorgan, Iran
چکیده [English]

In this study, multicomponent spinel nanoferrites with the general formula AₓB0.5-xZn0.5Fe2O4 (A,B=Ni, Mn, Co) were synthesized by the chemical co-precipitation method at three substitution levels (x = 0.0, 0.25, 0.5) to investigate the effect of divalent ion substitution on crystal structure and cation distribution. XRD patterns confirmed that all samples exhibited a single-phase cubic spinel structure. With increasing x, the lattice parameter and crystallite size showed systematic variations attributed to ionic radius differences and changes in cation site occupancy. Analysis of relative diffraction peak intensities and theoretical calculations revealed that the degree of inversion (δ) ranged from 0.35 to 0.45, indicating a partially inverse structure. The nonlinear behavior of δ with increasing x was ascribed to competition between the preference of divalent ions for B sites and the migration of Fe3+ ions. The results demonstrate a consistent correlation among chemical composition, lattice parameter, and cation distribution.

کلیدواژه‌ها [English]

  • Spinel ferrite
  • cation distribution
  • inversion parameter
  • X-ray diffraction
  • crystal structure
[1]        Boluki F., Khandan Fadafan H., Lotfi Orimi R., "Effect of Mn2+ substitution on the structure and magnetic properties of nanosized Ni(0.5-x)MnxZn0.5Fe2O4 (x = 0, 0.25, 0.35, 0.5) ferrites prepared by co-precipitation method (in persian)". Iranian Journal of Crystallography and Mineralogy 23(2015) 285-294.
[2]        Esmaili L., Gholizadeh A., "Effect of temperature and concentration of bismuth nitrate mole on structural, magnetic and photocatalytic properties of bismuth ferrite (in persian)". Iranian Journal of Crystallography and Mineralogy 26(2019) 1013-1026.
[3]        Khedri H., Gholiadeh A., Malekade A., "Effect of annealing temperature on structural, optical and catalytic properties of Cu-Zn ferrite nanoparticles (in persian)". Iranian Journal of Crystallography and Mineralogy 24(2016) 297-308.
[4]        Niyaifar M., Heidari M., "Preparation and investigation of magnetic properties of Manganese Cadmium ferrite nanoparticles by Sol-gel method (in persian)". Iranian Journal of Crystallography and Mineralogy 27(2019) 467-474.
[5]        Niyaifar M., Nazari S., Hassan pour A., "Effect of Zn substitution on varation microscopic structural and magnetic properties of MgZn ferrite (in persian)". Iranian Journal of Crystallography and Mineralogy 23(2015) 507-516.
[6]        Darandale S., et al., "Synthesis of Spinel Ferrites and Their Composites: A Comprehensive Review on Synthesis Methods, Characterization Techniques, and Photocatalytic Applications Journal of Chemical Reviews,  7(2025) 216.
[7]        Gaffar S., Kumar A., Riaz U., "Synthesis techniques and advance applications of spinel ferrites: A short review Journal of Electroceramics,  51(2023) 246-257.
[8]        Massoudi J., et al., "Magnetic and spectroscopic properties of Ni–Zn–Al ferrite spinel: from the nanoscale to microscale RSC Advances,  10(2020) 34556-34580.
[9]        Sanchez-Lievanos K.R., Stair J.L., Knowles K.E., "Cation Distribution in Spinel Ferrite Nanocrystals: Characterization, Impact on their Physical Properties, and Opportunities for Synthetic Control Inorganic Chemistry,  60(2021) 4291-4305.
[10]      Andersen H.L., et al., "Enhanced intrinsic saturation magnetization of Zn x Co 1− x Fe 2 O 4 nanocrystallites with metastable spinel inversion Materials Chemistry Frontiers,  3(2019) 668-679.
[11]      Mane D.R., et al., "Structural and magnetic characterizations of Mn Ni Zn ferrite nanoparticles physica status solidi (a),  207(2010) 2355-2363.
[12]      Baričić M., et al., "Chemical engineering of cationic distribution in spinel ferrite nanoparticles: the effect on the magnetic properties Physical Chemistry Chemical Physics,  26(2024) 6325-6334.
[13]      Hall C.A., et al., "Spinel ferrites MFe2O4 (M = Co, Cu, Zn) for photocatalysis: theoretical and experimental insights Journal of Materials Chemistry A,  12(2024) 29645-29656.
[14]      Henderson C.M., Charnock J.M., Plant D.A., "Cation occupancies in Mg, Co, Ni, Zn, Al ferrite spinels: a multi-element EXAFS study (eng)". J Phys Condens Matter,  19(2007) 076214.
[15]      Tran T.A., et al., "Effect of doping Mn ion on the crystal structure and cation distribution in Co1-xMnxFe2O4 compounds Journal of Materials Science: Materials in Engineering,  20(2025) 5.
[16]      Khandan Fadafan H., Lotfi Orimi R., Nezhadeini S., "Effect of Co doping on the magnetic and DC electrical properties of Mn-Zn nanoferrites Journal of Magnetism and Magnetic Materials,  456(2018) 98-103.
[17]      Fakhry F., et al., "Elastic and magnetic characteristics of nano-spinel ferrite Co0.5 MgxCu0.5−xFe2O4 Scientific Reports,  14(2024) 29407.
[18]      Vinnik D.A., et al., "Effect of the chemical substitution on structural parameters and microwave properties of the Co–Ni–Zn spinels Journal of Materials Research and Technology,  33(2024) 204-211.
[19]      Badiger H., Matteppanavar S., Hegde B., "Structural, cation distribution, magnetic and electrical properties of Co0. 5Zn0. 5− xNdxFe2O4 nano-ferrite Indian Journal of Physics,  98(2024) 2363-2374.
[20]      Tanna A.R., Joshi H.H., "Computer aided X-ray diffraction intensity analysis for spinels: hands-on computing experience. in Proceedings of World Academy of Science, Engineering and Technology", 2013. World Academy of Science, Engineering and Technology (WASET).
[21]      Birgani A.N., Niyaifar M., Hasanpour A., "Study of cation distribution of spinel zinc nano-ferrite by X-ray Journal of Magnetism and Magnetic Materials,  374(2015) 179-181.
[22]      Kurmude D.V., et al., "X-Ray Diffraction and Cation Distribution Studies in Zinc-Substituted Nickel Ferrite Nanoparticles Journal of Superconductivity and Novel Magnetism,  27(2014) 547-553.
[23]      Cullity B., Stock S.R., "Elements of X-ray Diffraction", Third Edition ed. 2014, Harlow, England: Pearson.
[24]      Pandit A.A., et al., "Structural and magnetic properties of Co1+ySnyFe2-2y-xCrxO4 ferrite system Bulletin of Materials Science,  26(2003) 517-521.
[25]      Parvatheeswara Rao B., et al., "Cation distribution of Ni-Zn-Mn ferrite nanoparticles Journal of Magnetism and Magnetic Materials,  456(2018) 444-450.
[26]      Shannon R.D., "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides Foundations of Crystallography,  32(1976) 751-767.
[27]      Montañez Molina M.F., et al., "XRD as an Alternative Technique for Cation Distribution Characterization of MFe2O4 Magnetic Nanoparticles Journal of Nanotechnology,  2024(2024) 5571685.
[28]      Matsubara N., et al., "Cation distributions and magnetic properties of ferrispinel MgFeMnO4 Inorganic chemistry,  59(2020) 17970-17980.
[29]      Islam M.A., et al., "Structural characteristics, cation distribution, and elastic properties of Cr(3+) substituted stoichiometric and non-stoichiometric cobalt ferrites (eng)". RSC Adv,  12(2022) 8502-8519.
[30]      Jain R., "A Review on the Development of XRD in Ferrite Nanoparticles Journal of Superconductivity and Novel Magnetism,  35(2022) 1033-1047.