کاربرد شیمی کانی‌ها در دما-فشارسنجی، تعیین محیط زمین‌ساختی و خاستگاه سنگ‌های نفوذی-نیمه‌عمیق جنوب غرب خوسف (شرق ایران)

نوع مقاله : پژوهشی

نویسندگان

1 دانشگاه بیرجند

2 3- گروه مهندسی معدن، دانشکده عمران، معدن و شیمی، دانشگاه صنعتی بیرجند، بیرجند، ایران

10.22128/ijcm.2026.3034.1005

چکیده

در 35 کیلومتری جنوب غرب خوسف و در بخش شرقی بلوک لوت، سنگ­های نفوذی و نیمه­عمیق با ترکیب مونزودیوریت و دیوریت پورفیری رخنمون دارند. برای بررسی شرایط فیزیکوشیمیایی تبلور و جایگزینی سنگ­های مورد بررسی از نتایج تجزیه ریزپردازشی کانی­های پلاژیوکلاز، بیوتیت و پیروکسن استفاده شد. گستره ترکیبی پلاژیوکلاز در مونزودیوریت بینAb69، An28 تاAb60،  An36 از نوع آندزین و در دیوریت پورفیری از Ab29، An70 تاAb66،  An32در گستره لابرادوریت تا آندزین است. بیوتیت به عنوان کانی شاخص فرومنیزین در مونزودیوریت از نظر ترکیبی، غنی از منیزیم و در گستره فلوگوپیت قرار دارد. ترکیب بیوتیت­ها بیانگر ماهیت آهکی قلیایی و محیط کمان فرورانش کرانه قاره­ای فعال برای سنگ میزبان است. بررسی شرایط اکسایش نشان می‌دهد که بیوتیت‌های مورد بررسی در گستره گریزندگی بالای اکسیژن و سری مگنتیتی قرار دارند که گویای شرایط اکسیدی ماگمای مادر و گرانیتوئید نوع I است. دمای تبلور و تعادل بیوتیت‌ها بر اساس مقدار  Tiموجود در آن­ها حدود 800 درجه سانتیگراد و فشار تشکیل بر اساس آلومینیوم کل بیوتیت‌ها حدود 5/0کیلوبار بوده که نشان­دهنده تشکیل بیوتیت­ها در عمق حدود 2 کیلومتر است. کلینوپیروکسن­ ها دارای ترکیب اوژیت مایل به دیوپسید است و دمای تشکیل آن­ها حدود 1150 تا 1200 درجه سانتیگراد و فشار در زمان تبلور آن­ها کمتر از 2 تا حدود 3 کیلوبار معادل عمق تقریبی 6 تا 10 کیلومتر بدست آمد.

کلیدواژه‌ها


عنوان مقاله [English]

Application of mineral chemistry in thermo-barometry, determination of tectonic environment and origin of intrusive-subvolcanic rocks in southwest of the Khousf (east of Iran)

نویسندگان [English]

  • seyyed saeid mohammadi 1
  • Malihe Nakhaei 2
1 ِDepartment of Geology, Faculty of Science, University of Birjand
2 Department of mining engineering, Faculty of civil, mining and chemistry, Birjand university of technology, Birjand, Iran
چکیده [English]

35 km southwest of the Khousf and in the eastern part of the Lut block, intrusive and subvolcanic rocks with a composition of monzodiorite and diorite porphyry are exposed. To investigate the physicochemical conditions of crystallization and replacement of the studied rocks, the results of EPMA of plagioclase, biotite, and pyroxene minerals were used. The compositional range of plagioclase in monzodiorite is Ab69, An28 to Ab60, An36 of andesine type, and in diorite porphyry is Ab29, An70 to Ab66, An32 in the range of labradorite to andesine. Biotite, as the ferromagnesian indicator mineral in monzodiorite, is compositionally rich in magnesium and is in the phlogopite range. The composition of biotites indicates the calc-alkaline nature and continental margin subduction arc environment for the host rock. The study of oxidation conditions shows that the studied biotites are located in the high oxygen fugacity range and magnetite series, which indicates the oxidation conditions

کلیدواژه‌ها [English]

  • Biotite
  • Clinopyroxene
  • Thermobarometry
  • I-type granitoid
  • Southwest of Khousf
  • Lut block
[1] Vahdati Daneshmand F., Kholghi M. H., "Geological Map of Iran, 1:100000 series, sheet7755-Khusf", Geological Survey of Iran (1988) Tehran (in Persian).
[2] Camp V.E., Griffis R.J., "Character, genesis and tectonic setting of igneous rock in the sistan suture zone, eastern Iran", Lithos(5-6)(1982) 221-239.
[3] Tirrul R., BellL.R., Griffis R. J., Camp V.E.,  "The Sistan suture zone of eastern Iran", Geological society of America Bulletin, 94(1)(1983) 134-150.
[4] Karimpour M.H., Stern C.R., Farmer L., Saadat S., Malekzadeh A., "A review of age, Rb-Sr geochemistry and petrogenesise of Jurassic to Quaternary igneous rocks in Lut block, Eastern Iran", Journal of Geopersia 19(2011) 36.10.22059/JGEOPE.2011.22162.
[5] Arjmandzadeh R.,  Santos J.F.,  "Sr - Nd isotope geochemistry and tectonomagmatic setting of the Dehsalm Cu - Mo porphyry mineralizing intrusives from Lut Block, eastern Iran", International Journal Earth Science 103(2014) 123-140.
[6] Pang K. W., Chung S. L., Zarrinkoub M. H., Khatib M. M., Mohammadi S. S., Chu C. H., Lee H. Y., Lo, C. H., "Eocene-Oligocene post-collisional magmatism in the Lut-Sistan region, eastern Iran: Magma genesis and tectonic implications", Lithos 87-88(2013) 231-245. 10.1016/j.lithos.2013.05.009.
[7] Eftekharnejad G., "Notes on the formation of flysch sedimentary basins in Eastern Iran and its relation to plate tectonic theory, in Stocklin, Eftekharnejad, and Hoshmandzadeh, eds., Primarily investigation on the geology of Lut block, Eastern Iran", Geological Survey of Iran, Report 22 (1973) 67–71.
[8] Aghanabati A., "Geology of Iran", Geological Survey of Iran, Tehran, (2005) 538 pp, (Persian book).
[9] Rezazadeh A., "Petrology of volcanic and subvolcanic rocks in northeast of Nalino (southwest of Khousf), Southern Khorasan", M.Sc.Thesis, University of Birjand, Birjand, Iran, (2019)74p(in Persian).
[10] Baraghoosh H., "Petrology of volcanic and subvolcanic rocks in southeast of Nalino (southwest of Khousf), Southern Khorasan", M.Sc.Thesis, University of Birjand, Birjand, Iran, (2019)121p(in Persian)..
[11] Khafaje Ghasemabadi M., "Petrology of Tertiary igneous rocks in north of Halami (Southwest of Birjand)", M.Sc.Thesis, University of Birjand, Birjand, Iran, (2024)76p(in Persian).
[12] Ovung T. N., Ray J., Ghosh B., Koeberl C., Topa D., Paul M. "Clinopyroxene composition of volcanics from the Manipur Ophiolite Northeastern India: implications to geodynamic setting", International Journal of Earth Sciences (107)(2017)1215-1229.  DOI: 10.1007/s00531-017-1529-y.
[13] Liang Y., Deng J., Liu X., Wang Q., Qin C., Li Y., Yang Y., Zhou M., Jiang J., "Major and trace element, and Sr isotope compositions of clinopyroxene phenocrysts in mafic dykes on Jiaodong Peninsula, southeastern North China Craton: Insights into magma mixing and source metasomatism", Lithos (302–303)(2018) 480–495.
[14] Bahajrouy, M., Taki S., Ganji A., "Mineral chemistry and thermo-barometry of intrusives from northern side of Shahroud river around Zardkuh in Guilan province (northern Iran)", Revista Cientifica (33)(2)(2020)556-578.  https://doi.org/10.5377/nexo.v33i02.10792.
[15] Rakotondravaly D.A., Roger Randrianja R.,"Mineral Chemistry, Geobarometry and Oxygen Fugacity of the Granitic Rocks from the Itremo Domain, Central Madagascar", Journal of Geoscience and Environment Protection(10) (2022) 145-166. https://www.scirp.org/journal/gep
[16] Sousa  C.S., Fernandes D.M., Soares H.S., Rosa M.L.S., Conceição H., "Chemical compositions of biotite as a petrogenetic discriminator: Rio Jacaré Batholith, Borborema Province, NE Brazil",  Northeast  Geosciences Journal (10)(1) (2024) 441-455. https://doi.org/10.21680/2447-3359.2024v10n1ID32058
[17] Pan  T., Yuchuan Ch., Juxing T.,  Ying W., , Wenbao Zh., Qiufeng L., , Bin L.,   Chunneng W., Advances in Research of Mineral Chemistry of Magmatic and Hydrothermal Biotites", Acta Geologica Sinica (English Edition) 93(6)(2019) 1947–1966. DOI: 10.1111/1755-6724.14395.
[18] Li X., Zhang Ch.,   Behrens H., Holtz F.,"Calculating biotite formula fromelectron microprobe analysis data using a machine learning method based on principal components regression", Lithos(356–357) (2020) 105371. https://doi.org/10.1016/j.lithos.2020.105371.
[19] Nalluri S., Ragi M.R., Valivetti S.S Pandey R.,"Mineral chemistry of biotite and hornblende from Mesoproterozoic quartz syenite intrusions of the Cuddapah Intrusive Province, Eastern Dharwar Craton, India: implications for their source characterization",Mineralogy and Petrology(117)(2023).
[20] Abdel- Rahman A.M., "Nature of biotites from alkaline, calc-alkaline, and peraluminous magmas", Journal of petrology35(1994) 525-541.
[21] Nachit H., Ibhi A.,  Ohoud M.B., "Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites", Comptes Rendus Geoscience 337 (16)(2005) 1415-1420. https://doi.org/10.1016/j.crte.2005.09.002
[22] Henry D., Guidotti C.V., Thomson J., "The Ti-saturation surface for low-to-medium pressure metapeliticbiotites: Implications for geothermometry and Ti-substitution mechanisms", American Mineralogist 90(2005) 316– 328.
[23] Putirka K. D., "Thermometers and Barometers for Volcanic Systems", Reviews in Mineralogy and Geochemistry69(2008)61-120. https://doi.org/10.2138/rmg.2008.69.3.
[24] Ridolfi F, Renzulli A., Puerini M.,  "Stability and chemical equilibriumof amphibole in calc-alkaline magmas: an overview, newthermobarometric formulations and application to subduction related volcanoes", Contributions to Mineralogy and Petrology160(2010)45–66. https://doi.org/10.1007/s00410-009-0465-7.
[25] Neave D.A., Putirka K.D., "A new clinopyroxene-liquid barometer,and implications for magma storage pressures under Icelandic rift zones", American Mineralogist102(2017) 777–794. https://doi.org/10.2138/am-2017-5968.
[26] Cheng Zh., Guo Zh., Dingwell B., Li X.,  Zhan M., Liu  J.,  Zhao W., Lei M., "Geochemistry and petrogenesis of the post-collisional high-K calc-alkaline magmatic rocks in Tengchong, SE Tibet", Journal of Asian Earth Sciences193)2020(104309. https://doi.org/10.1016/j.jseaes.2020.104309.
[27] Namnabat E., Ghorbani M., Nakashima K., Tabatabaei S.H. and Tavakoli N., "Mineral chemistry and Petrology of the Andarian volcanic rocks:insight to the Ahar-Arasbaran magmatic zone, Northwestern Iran", Arabian Journal of Geosciences, 14(2021)1922. https://doi.org/10.1007/s12517-021-08246-1.
[28] Richard L.R., "Minpet: mineralogical and petrological data processing system, version 2.02", Minpet Geological Software(1995),  Quebec, Canada.
[29] Whitney D.L., Evans, B.W., "Abbreviations for names of rock-forming minerals", American mineralogist 95(2010) 185-187.
[30] Shabani A.A.T; Masoudi F., Tecce F., "An Investigation on the Composition of Biotite from Mashhad Granitoids, NE Iran", Journal of Sciences, Islamic Republic of Iran 21(4)(2010) 321-331.
[31] Hossain I., Tsunogae T.,"Crystallization Conditions and Petrogenesis of the Paleoproterozoic Basement Rocks in Bangladesh: An Evaluation of Biotite and Coexisting Amphibole Mineral Chemistry", Journal of Earth Science (25)(1)(2014) 87–97. DOI: 10.1007/s12583-014-0402-1.
[32] Idrus A.,"Petrography and Mineral Chemistry of Magmatic and Hydrothermal Biotite in Porphyry Copper-Gold Deposits: A Tool for Understanding Mineralizing Fluid Compositional Changes During Alteration Processes", Indonesian Journal on Geoscience (5)(1) (2018) 47-64.
[33] Kumar A., Ashok Ch.,  "Geochemistry and mineral chemistry of the Armoor granitoids, eastern dharwar craton: implications for the redox conditions and tectono-magmatic environment", Acta Geochim (43)(2024) 110–133. https://doi.org/10.1007/s11631-023-00647-1.
[34] Wang N., Sui X., He M., Yang M., Peng B., "Geochemistry and Mineralogy of Phlogopite and Its Implications for Serpentinization of Jian Forsterite Jade in Southern Jilin Province, China", Minerals14(2024)1087. https://doi.org/10.3390/ min14111087
[35] Machev P., Klain L., HechtL., "Mineralogy and chemistry of biotites from the Belogradchik pluton-some petrological implications for granitoidmagmatism in north-west Bulgaria", Bulgarian geological Society, Annual scientific conference "geology"(2004) 48-50.
[36] Deer W.A., Howie R.A., Zussman J., "An introduction to the rock forming minerals",
Longman Ltd (1992) 528 p.
[37] Foster M.D., "Interpretation of the composition of trioctahedral micas", United States Geological Survey Professional Paper 354-B(1960) 11-46.
[38] Li W. K., Yang Z. M., Cao K., Lu Y. J., Sun M. Y., "Redox-controlled generation of the giant porphyry Cu-Au deposit at Pulang, southwest China", Contributions to Mineralogy and Petrology(174)(12)(2019a) 1-34.
[39] Shabani A.A., Lalonde A.E., and Whalen J.B.,  "Composition of biotite from granitic rocks of the Canadian Appalachian orogen: a potential tectonomagmatic indicator?", The Canadian Mineralogist41(6)(2003)1381–1396.
[40] Zhou J.,  "The origin of intrusive mass in Fengshandong, Hubei province", Acta Petrologica Sinica2(1986) 59-70.
[41] Nachit H., Razafimahefa N., Stussi J.M., Carron J.P., "Composition chimique des biotites et typologie magmatique des granitoids", Comtes Rendus Hebdomadaires de 1ُ  Academie des Sciences 301(11)(1985)813-818.
[42] Wones D.R., Eugster, H.P.,  "Stability of biotite: experiment, theory and application", American Mineralogist 50(1965) 1228-1272.
[43] Anderson J.L., Smith D.R., "The effects of temperature and ƒO2 on the Al-in-hornblende barometer", American Mineralogist80(1995) 549-559.
[44] Dymek R.F., "Titanium, aluminium and interlayer cation substitutions in biotite from high grade gneisses, West Greenland", American Mineralogist68(1983) 880-899.
[45] Abuquerque C.A., "Geochemistry of biotites from granitic rocks, northern Portugal", Geochimica Cosmochimica Acta37 (1973) 1779-1802.
[46] Tronnes R.G., EdgarA.D., Arima, M., "A high pressure-high tempera-ture study of TiO2 solubility in Mg-rich phlogopite: Implications to phlogopite chemistry", Geochimica et Cosmochimica Acta49 (1985) 2323–2329.
[47] Henry D.J.,  Guidotti C.V., "Ti in biotite from metapelitic rocks: Temperature effects,crystallochemical controls and petrologic application", American Mineralogist(87)(2002) 375-382.
[48] Tang P., Tang J.X.,  Lin B., Wang L.Q., Zheng W.B., Leng Q.F.,  Gao X., Ze-bin Zhang Z.B., Tang X.Q., "Mineral chemistry of magmatic and hydrothermal biotites from the Bangpu porphyry Mo (Cu) deposit, Tibet", Ore Geology Reviews 115 (2019) 103122. ttps://doi.org/10.1016/j.oregeorev.2019.103122.
[49] Gogoi   A., Bhagabaty B., " Mineral Chemistry and Geothermometry of Biotite in the Granitoids, Located in and around Jirang-Patharkhamah Area, Ri-Bhoi District, Meghalaya, India", Journal of Geological. Society of India98 (2022) 245-259. https://doi.org/10.1007/s12594-022-1965-6.
[50] Sirimongkonpun M.,   Tukpho Th.,  FankaA., "Mineral chemistry of biotite from granitic rocks in Prachuap Khiri Khan, southern Thailand: Implications for crystallization condition and petrogenesis", Bulletin of Earth Sciences of Thailand(15)(1)(2023) 1-14.
[51] Robert J.L., "Titanium solubility in synthetic phlogopite solid solutions", Chemical Geology, 17(3))1976( 213–227.
[52] Uchida E., Endo S., Makino M., "Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits", Resource Geology57(1)(2007) 47–56.
[53] Putirka K., Johnson M., Kinzler R., Walker D., "Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0-30 kbar", Contributions to Mineralogy and Petrology 123(1996) 92-108.
[54] Guo K.,       Wang  X.,      Chen Sh.,      Shang L.,   Liu B.,  Zhang  X., Lai Zh.,  "The delamination of lower crust in continental back-arc basin: Evidence from Sr isotope and elemental compositions of plagioclase and clinopyroxene in andesites from Kueishantao, north of Taiwan, China", LITHOS 416-417 (2022) 106653.  10.1016/j.lithos.2022.106653.
[55] Morimoto N., "Die nomenklatur von Pyroxenen." Mineralogy and Petrology 39 (1988) 55-76.
[56] Li X.W., Mo X.X., Yu X.H., Ding Y., Huang X.F., Wei P.,  He W.Y.,  "Petrology and geochemistry of the early Mesozoic pyroxene andesites in the Maixiu Area, West Qinling, China: Products of subduction or syn-collision?". Lithos 172–173(2013)158–174. https://doi.org/10.1016/J.LITHOS.2013.04.010
[57] Le Bas M. J., "The role of aluminum in igneous clinopyroxenes with relation to their parentage", American Journal of Science, 260(4)(1962) 267-288.
[58] Nisbet E. G., Pearce J. A., "Clinopyroxene composition in mafic lavas from different tectonic setting". Contributions to Mineralogy and Petrology, 63(2)(1977) 149-160.
[59] Beccaluva L., Macciotta G., Piccardo G. B.,  Zeda, O.,  "Clinopyroxene composition of ophiolite basalts as petrogenetic indicator". Chemical Geology, 77(3-4)(1989) 165-182.
[60] Soesoo A., "A multivariate statistical analysis of clinopyroxene composition: Empirical coordinates for the crystallisation PT‐estimations", GFF 119(1) (1997) 55-60. 10.1080/11035899709546454.
[61] Nimis P., Taylor W.R., "Single clinopyroxen thermobarometry for garnet peridotites. Part1. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer", Contributions to Mineralogy and Petrology139(2000) 541-554.
[62] Aoki K., Ikuko Sh., "Pyroxenes from lherzolite inclusions of Itinome-gata, Japan," Lithos 6 (1973) 41-51. 10.1016/0024-4937(73)90078-9.
[63] Helz R.T., "Phase relations of basalts in their melting ranges at pH2O=5 kb as a function of oxygen fugacity, Part I, Mafic phases", Journal of Petrology14(2)( 1973) 249-302.