Geochemical characteristics and origin of lamprophyres from Mian-Bazar area, North of Zahedan, SE Iran

Document Type : Original Article

Authors

University of Sistan and Baluchestan

10.22128/ijcm.2025.2965.0

Abstract

In the Mian-Bazaar area, north of Zahedan, eastern Iran, a large number of calk-alkaline lamprophyre dikes are intruded in the flysch-type rocks of Cretaceous to Upper Eocene. The lamprophyres are of two types: Vogesite (Amp+Afs+Opq+Cpx+Ap±Cal±Ol) and minette (Ph+Cpx+Afs+Ol+Opq+Ap±Amp). Average SiO2, total alkali, MgO, and Mg-number are respectively 49.17, 7.68, 7.20 wt. %, and 63 for vogesites, and 49.94, 5.01, 9.06 wt. %, and 67 for minettes. These rocks are highly enriched in LILEs relative to HFSEs; for instance, the ratios of Rb/Hf and Ba/Nb are 9.97 and 63.59. They are also enriched in LREEs compared to MREEs and HREEs; for example, average of La/Yb, La/Sm and Gd/Yb ratios in these samples are 25.81, 7.11 and 3.01. Based on reverse melting model, the source of these rocks is an enriched, phlogopite peridotite in the garnet stability field. Using non-modal batch melting model, these samples are formed as a result of low degrees of partial melting, about one percent, of a combination of phlogopite lherzolite and garnet lherzolite, respectively with a mixture of about 80% and 20% to 50% and 50%. In the tectonic discrimination diagrams of Zr-Ti, Zr-Zr/Y, Ti/Y-Zr/Y, Nb/Y-Ti/Y the samples are plotted in the field of intra-plate basalts. REE and spider diagram patterns of the samples are similar to those of OIB. Magma emplacement is proposed to be occurred in an extensional setting.

 

Keywords


[1] Rock N.M.S., "Lamprophyres", (1991) 285p. Blackie, Glasgow. https://doi.org/10.1007/978-1-4757-0929-2
[2] Soder C., Romer R. L., "Post-collisional potassic–ultrapotassic magmatism of the Variscan Orogen: implications for mantle metasomatism during continental subduction", Journal of Petrology 59 (2018) 1007-1034. https://doi.org/10.1093/petrology/egy053
[3] Ghent E.D., Edwards B.R., Russell J.K., "Pargasite-bearing vein in spinel lherzolite from the mantle lithosphere of the North America Cordillera", Canadian Journal of Earth Sciences, 56 (2019). https://doi.org/10.1139/cjes-2018-0239
[4] Murphy D., Moore T.A., Amijaya D.H., Anggaram F., Friederich, M.,  Gaina C.,  Trofimov J., Dalton H., Ominigbo E., "Constraints from lamprophyre petrogenesis on the timing of Eocene lithospheric thinning and associated rifting of Borneo and Sulawesi", Journal of Asian Earth Sciences, 260 (2024). https://doi.org/10.1016/j.jseaes.2023.105952
[5] Hou Q., Yang X.Y., Tang J., Liu L., "Geochemical constraints of lamprophyres: Clues of Mesozoic tectonic interaction between the South China Block and North China Craton in Northern Jiangsu Province", Lithos 424-425 (2022) 106757 https://doi.org/10.1016/j.lithos.2022.106757
[6] Raeisi D., Gholoizadeh K., Nayebi N., Babazadeh Sh., Nejadhadad M., "Geochemistry and mineral composition of lamprophyre dikes, central Iran: implications for petrogenesis and mantle evolution", Journal of Earth System Science 128 (2019).
https://doi.org/10.1007/s12040-019-1110-0
[7] Omrani H., Günter Ch., Shamanian G.H., Omrani M., "Post-collisional alkaline lamprophyre magmatism in northern Iran: Implications from whole-rock geochemistry and mineral compositions", Island Arc 31 (2022). https://doi.org/10.1111/iar.12469
[8] Sargazi M., Bagheri S., Ma X., "Oligocene calc-alkaline lamprophyres and K-rich association in the eastern Iranian ranges: Products of low-degree melting of subduction-modified lithospheric mantle in post-orogenic setting", Lithos, 430-431 (2022), https://doi.org/10.1016/j.lithos.2022.106864 FF
[9] Badrzadeh Z., Aghazadeh M., Fayaz F., "Geochemistry, Petrogenesis and dating of lamprophyric dykes in the Kaleybar area, NW Iran (in oersian)", Iranian Journal of Crystallography and Mineralogy 30 (2022) 639-652. http://dx.doi.org/10.52547/ijcm.30.4.639
[10] Tabatabaei Manesh, S.,  Veysi. S., "Thermobarometry and mineral chemistry of Central Iran Permo-Triassic lamprophyres in Chahrisseh Region, northeast Isfahan (in persian)", Iranian Journal of Crystallography and Mineralogy  29 (2021) 463-478. https://doi.org/10.52547/ijcm.29.2.463
[11] Arzhangnezhad F., Ghadami Gh., Moradian A., Poosti M., "Petrography, geochemistry and determination of temperature and pressure of crystallization of pyroxene and plagioclase minerals in diabasic and lamprophyre dykes of Jupar block (south of Kerman) (in persian)". Iranian Journal of Crystallography and Mineralogy 27 (2019) 707-722
http://dx.doi.org/10.29252/ijcm.27.3.707
[12] Ghafari Bijar S., Arvin M., Dargahi S., "Geochemistry and petrogenesis of potassic monzonites in the Lar igneous suite, north of Zahedan, eastern Iran: Constraints on the origin of C-type adakites  (in persian)", Iranian Journal of Crystallography and Mineralogy  29 (2021) 837-852.
https://doi.org/10.52547/ijcm.29.4.837
[13] Ahmadi A, Biabangard H., "Geothermobaromertry of minettes from Kouleh sangi area, north of Zahedan, southeast Iran (in persian)", Iranian Journal of Crystallography and Mineralogy  32 (2024) 537-550. http://dx.doi.org/10.61186/ijcm.32.3.537
[14] Biabangard H., Fatameian M., Moridi Farimani A.A., Bakhshi Mohabi M.R., "Petrography, geochemistry and tectono-magmatic setting of the dykes of the north and the west of Zahedan (Southeast Iran) (in persian)", Petrological Journal, 31 (2017) 147-164. https://doi.org/10.22108/ijp.2017.81975.0
[15] Moradi R., Boomeri M., Bagheri S., Nakashima K., "Mineral chemistry of igneous rocks in the Lar Cu-Mo prospect, southeastern part of Iran: implications for P, T, and ƒO2", Turkish Journal of Earth Sciences 25 (2016) 1-17. https://doi.org/10.3906/yer-1510-5
[16] Boomeri M., Moradi R., Stein H., Bagheri S., "Geology, Re-Os age, S and O isotopic composition of the Lar porphyry Cu-Mo deposit, Southeast Iran", Ore Geology Review 104 (2019) 477–494. https://doi.org/10.1016/j.oregeorev.2018.11.018
[17] Tirrul R., Bell L. R., Grifffis R. J., Camp V. E., "The Sistan suture zone of eastern Iran", Geological Society of America Bulletin 84 (1983) 134-150.
[18] Aghanabati A., "Geology of Iran (in Persian)", Geological Survay of Iran (2004) 640p.
[19] Zarrinkoub M.H., Pang K.N., Chung S.L.,  Khatib M.M.,  Mohammadi S.S., Chiu H.Y., Lee H.L., "Zircon UPb age and geochemical constraints on the origin of the Birjand ophiolite, Sistan suture zone, eastern Iran", Lithos 154 (2012) 392-405.
http://dx.doi.org/10.1016/j.lithos.2012.08.007
[20] Pang K. N., Chung S. L., Zarrinkoub M.H., Khatib M.M., Mohammadi S.S., Chiu H.Y. , Chu C.H., Lee H.Y., Lo C.H., "Eocene–Oligocene post-collisional magmatism in the Lut–Sistan region, eastern Iran: Magma genesis and tectonic implications", Lithos, 180-181 (2013), 234-251. https://doi.org/10.1016/j.lithos.2013.05.009
[21] Bröcker M., Hövelkröger  Y., Fotoohi Rad, Gh.,  Berndt  J., Scherer E., Kurzawa, T.,  Moslempour  M. E., "The magmatic and tectono-metamorphic history of the Sistan suture zone, Iran: New insights into a key region for the convergence between the Lut and Afghan blocks", Journal of Asian Erath Sciences, 234 (2022). https://doi.org/10.1016/j.jseaes.2022.105313
[22] Farokh-Nezhad M., "Geochemical characterization of potassic mafic rocks, monzonites and syenites from Lar complex, eastern Iran", MSc Thesis (2011), University of Sistan and Baluchestan, Zahedan, Iran.
[23] Aghanabati A., "Geological map of Kuh-e-Doposhti, 1:100000series, sheet 8150", Geological survey of Iran (1987) Tehran.
[24] Camp V., Griffis R., "Character, genesis and tectonic setting of igneous rocks in the Sistan suture zone, eastern Iran", Lithos 15 (1982) 221–239. https://doi.org/10.1016/0024-4937(82)90014-7.
[25] Muller D., Groves D., Bhattachargi S., "Potassic Igneous Rocks and Associated Gold-Copper Mineralization', (1997) Springer, Berlin. https://doi.org/10.1007/978-3-642-59665-0_7
[26] Le Maitre R.W., "Igneous Rocks, a Classification and Glossary of Terms", (2002), 236 p. Cambridge University Press, New York.
[27] Williams H., Turner F.J.,  Gilbert C.M., "Petrography: An Introduction to the Study of Rocks in Thin Sections", second edition, W.H. Freeman, 1983, New York, NY, 626p.
[28] Whitney D.L., Evans B.W., "Abbreviations for names of rock-forming minerals", American Mineralogist 95 (2010) 185-187. https://doi.org/10.2138/am.2010.3371
[29] McDonough W.F., Sun S.S., "The composition of the earth", Chemical Geology, 120 (1995) 223-253. https://doi.org/10.1016/0009-2541(94)00140-4
[30] Sun S.S., McDonough W.F., "Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes", Geological Society of London, Special publications, 42 (1989) 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
[31] Shaw D.M., "Trace element fractionation during anatexis", Geochimica et Cosmochimica Acta, 34 (1970) 237-243. https://doi.org/10.1016/0016-7037(70)90009-8
[32] McKenzie D., O'Nions R.K., "Partial melt distributions from inversion of rare earth element concentrations", Journal of Petrology, 32 (1991) 1021–1091. https://doi.org/10.1093/petrology/32.5.1021
[33] White W.M., "Geochemistry", Wiley-Blackwell, (2013) California, USA. 668 p. https://doi.org/10.1017/S0016756813000708
[34] Kheirkhah M., Neill M.I., Allen M.B., "Petrogenesis of OIB-like basaltic volcanic rocks in a continental collision zone: Late Cenozoic magmatism of Eastern Iran”, J of Asian Earth Sciences, 106 (2015) 19-33.
[35] Meschede M., "A method of discriminating between different types of mid-ocean-ridge basalts and continental tholeiites with the Nb–Zr–Y diagram", Chemical Geology 56 (1986) 207–218. https://doi.org/10.1016/0009-2541(86)90004-5
[36] Pearce J.A., Cann J.R., "Tectonic setting of basic volcanic rocks determined using trace element analyses", Earth and Planetary Science Letters, 19 (1973) 290–300. https://doi.org/10.1016/0012-821X(73)90129-5
[37] Mullen E.D., "MnO/TiO2/P2O5: A minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis", Earth and Planetary Sciences and Letters 62 (1983) 53-62. https://doi.org/10.1016/0012-821X(83)90070-5
[39] Stoppa F., Rukhlov A. S., Bell K., Schiazza M., Vichi G. "Lamprophyres of Italy: early Cretaceous alkaline lamprophyres of Southern Tuscany Italy", Lithos, 188 (2013) https://doi.org/10.1016/j.lithos.2013.10.010
[40] Casetta F., Ickert R. B., Mark D. F., Bonadiman C., Giacomoni P. P., Ntaflos T., Coltorti M., "The alkaline lamprophyres of the Dolomitic Area (Southern Alps, Italy): markers of the Late Triassic change from orogenic-like to anorogenic magmatism", Journal of Petrology, 60 (2019), 1263-1298. http://dx.doi.org/10.1093/petrology/egz031.
[41] Sarhaddi N., Ahmadi A., Firoozkoohi Z., Jami M., "Petrological and geochemical nature of mesocratic and melanocratic dykes in Lakhshak granodiorite, Northwest of Zahedan (in Persian)", Scientific quarterly Journal of Geosciences, 104 (2017) 149-162. https://doi.org/10.22071/gsj.2017.50183
[42] Ma L., Jiang S.Y., Hofmann A.W., Dai B.Z., Hou M., Zhao K., Chen H., Li J.W., Jiang Y.H., "Lithospheric and asthenospheric sources of lamprophyres in the Jiaodong Peninsula: A consequence of rapid lithospheric thinning beneath the North China Craton?", Geochimica et Cosmochimica Acta 124 (2014) 250-271. https://doi.org/10.1016/j.gca.2013.09.035
[43] Pedersen T., Ro E.H., "Finite duration extension and decompression melting", Earth and Planetary Science Letters 113 (1992) 15-22. https://doi.org/10.1016/0012-821X(92)90208-D
[44] Conceição R.V., Green D.H.,  "Derivation of potassic (shoshonitic) magmas by decompression melting of phlogopite + pargasite lherzolite", Lithos 72 (2004) 209-229.
[45] Gudmundsson A., "Magma chambers: Formation, local stresses, excess pressures, and compartments", Journal of Volcanology and Geothermal Research 237-238 (2012) 19-41. https://doi.org/10.1016/j.jvolgeores.2012.05.015
[46] Kjoll J., Galland O., Labrousse L., Anderson T.B., "Emplacement mechanisms of a dyke swarm across the brittle-ductile transition and the geodynamic implications for magma-rich margins", Earth and Planetary Science Letters, 518 (2019) 223-235.