بررسی کانی‌شناسی، زمین شیمی و میانبارهای سیال در رخداد معدنی آلچه‌قشلاق، ورزقان، استان آذربایجان شرقی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه تبریز

2 پژوهشکده علوم زمین

10.22128/ijcm.2025.2972.0

چکیده

رخداد معدنی آلچه‌قشلاق، در شمال ورزقان واقع بوده و بخشی از کمربند فلزایی ارسباران است. سنگ­های میزبان کانه­زایی شامل داسیت، ریولیت، ریوداسیت و آندزیت ائوسن هستند که با توده‌های نفوذی نیمه­عمیق قطع شده­اند. این سامانه با انواع دگرسانی گرمابی (سیلیسی، آرژیلی و پروپیلیتی) فعالیت خود را با ایجاد برش­های گرمابی آغاز کرده و  با نفوذ سیال­های سیلیسی- سولفیدی و باریتی تداوم یافته است. از ویژگی­های اصلی کانه­زایی، وجود کانه­زایی (درون­زاد و برون­زاد) در راستای پهنه­های شکستگی و برشی‌، به­صورت جانشینی، افشان و رگه- رگچه‌ای‌ است. کانی­های پیریت، اسفالریت، گالن، آرسنوپیریت، کالکوپیریت و تتراهدریت همراه با باطله کوارتز در مرحله درونزاد و کانی­های ثانویه شامل کالکوسیت، مالاکیت، آزوریت، گوتیت و هماتیت در مرحله برونزاد تشکیل شده‌اند. بررسی­های زمین­شیمی بر رگه­های سیلیسی نشانگر حضور طلا و فلزهای پایه (سرب، روی و مس) با بیشترین همبستگی بین طلا با نقره و آرسنیک است. نتایج بررسی میانبارهای سیال در بلورهای کوارتز، باریت و اسفالریت در مرحله دوم کانی‌زایی نشان دهنده دﻣﺎهای ﻫﻤﮕﻦﺷﺪﮔﻲ بین 140 ﺗﺎ 394 درﺟﻪﺳﺎﻧﺘﻲﮔﺮاد و شوری از 5 تا 9/20 درصد وزنی معادل نمک طعام است. همچنین حضور همزمان میانبارهای سیال­ دوفازی غنی از مایع و تک­فازی گازی و بافت­های برشی گرمابی به فرآیند جوشش و افت فشار همراه با نهشت کانی‌های سولفیدی اشاره دارند. بر این اساس سامانه­های دگرسانی و رخداد معدنی آلچه‌قشلاق بیشترین شباهت را با ذخایر فراگرمایی نشان می­دهد.

کلیدواژه‌ها


عنوان مقاله [English]

The study of Mineralogy, geochemistry and fluid inclusions in the Alcheh-Qeshlaq mineral occurrence, Varzaghan, East Azerbaijan Province

چکیده [English]

The ore-bearing veins at Alcheh-Qeshlaq is located in north of Varzeghan and is a part of the Ahar-Jolfa metallogenic belt. The main rocks hosting the ore-bearing siliceous and barite veins in this area chiefly include dacite, rhyolite, rhyo-dacite, and andesite of Eocene age which were intruded by hypabyssal intrusive bodies. This system with creation of various types of alterations (silicic, argillic and propylitic) commenced its activity in the form hydrothermal breccias and followed by the formation of infiltration of siliceous and sulfide-containing fluids. Mineralization occurred in two separate stages of hypogene and supergene along the fracture zones, veins, and breccia zones in the form of replacement, dissemination, vein-veinlets. Geochemical investigations on these veins indicate the presence of gold, lead, zinc, and copper in them. Minerals like pyrite, sphalerite, galena, arsenopyrite, chalcopyrite, and tetrahedrite along with quartz and barite gangues formed during hypogene stage while the secondary minerals including chalcocite, malachite, azurite, goethite, and hematite were developed during supergene stage. Among these, gold shows high correlation with silver and arsenic. Micro-thermometric analysis in quartz, barite, and sphalerite crystals shows that the homogenization temperatures range from 140ºC to 394ºC and the salinities vary from 5 to 20.9 wt% NaCl eq. Evidences like the coexistence of mono-phase gas and liquid-rich 2-phase fluid inclusions and hydrothermal breccia textures are indicative of boiling process and pressure fall along with deposition of sulfide minerals. Mineralogical and field evidences show that the alteration and mineralization system at Alcheh-Qeshlaq are of epithermal type.

کلیدواژه‌ها [English]

  • : Mineralization
  • Epithermal
  • Fluid inclusions
  • Alcheh-Qheshlaq Varzeghan
[1] Kowsari A., “Semi-detailed geochemical studies of Arpalin area (vol. 3)”, Geological and Mineral Exploration Survey of Iran, Tehran (1994).
[2] Ghorbani M., “Economic Geology of Mineral Deposits of Iran (vol. 1)”, Arian Zamin publication, Tehran (2007).
[3] Calagari A. A., “Geochemical, stable isotope, noble gas, and fluid inclusion studies of mineralization and alteration at Sungun porphyry copper deposit, East Azarbaidjan, Iran”, Implication for genesis. Unpublished PhD. Thesis. Manchester University, Manchester, (1997) p. 537.
[4] Calagari A. A., “Geology and fracture-related hypogene hydrothermal alteration and mineralization of porphyry copper deposit at Sungun”, Journal of Geological Society of India 64 (2004) 595-618
[5] Ramezani Tayebe, Maanijou M., Taghavi A., Lentz., “Influence of Tectonic Factor on Porphyry Copper Deposits Localization and Distribution (Arasbaran District, NW Iran”, Synthesis of Alteration Patterns and Lineaments Using Digital Techniques. Geotectonics, (2022) 56. 10.1134/S0016852122030062.
[6] Izadyar J., M.Sc. “Thesis Study on the Igneous Rocks in the Sungun’s ore Area”, Shahid Beheshti University, Faculty of Earth Science, Tehran (1992).
[7] Ebrahimi S., Alirezaei S., Pan Y., Mohammadi B., “Mineralogy and ore fluid characteristics of the Masjed Daghi gold bearing veins system, NW Iran”, Journal of Economic Geology 9(2) (2017) 561-586.
[8] Hosseinzadeh M. R., Maghfouri S., Ghorbani M., Moayyed M., “Vein- Veinlets related with Mineralization and Fluid Inclusion Studies in the Sonajil Porphyry Cu- Mo Deposit, Arasbaran Magmatic Zone (in Persian)”, Scientific Quarterly Journal of Geoscience 26(101) (2016)  219-231. https://doi.org/10.22071/gsj.2016.41069
[9] MAANIJOU M., RAMEZANI T., Alipor S., “The main effective factors on the mineralization of Sonajil porphyry-epithermal copper-gold deposit, using remote sensing, mineralogical and geochemical studies”, IRANIAN JOURNAL OF GEOLOGY, 12(48) (2019) 63-79. https://sid.ir/paper/129274/en
[10] Hassanpour S., “Metallogeny and Mineralization of copper and gold in Arasbaran zone (Eastern Azerbaijan (in Persian))”, Ph. D. thesis, Shahid Beheshti University, Tehran, Iran (2010).
[11] Khalilzadeh H., Alipour S., Abedini A., “Geochemistry, tectonic setting and magmatic origin of the mineralized stock in SahebDivan porphyry copper system”, NW Iran. Iranian Journal of Crystallography and Mineralogy 27 (4) (2019) 781-794.
[12] Simmonds V., Calagari A. A., Kyser K., “Fluid inclusion and stable isotope studies of the Kighal porphyry Cu-Mo prospect, East- Azarbaidjan”, NW Iran. Arabian Journal of Geosciences 8 (2015) 437- 453. https://doi.org/10.1007/s12517-013-1130-z
[13] Ramazani T., Maanijou M., Asadi S., Lentz D., Pirouznia N., “Comparison of mineralization of the Sungun and Kighal porphyry copper deposits, NW Iran: With an emphasis on fluid inclusion studies”, JOURNAL OF ECONOMIC GEOLOGY, 10(2) (2019) 403-424. https://sid.ir/paper/180484/en.
[14] Hajalilou B., Aghazadeh M., “Geological, Alteration and Mineralization Characteristics of Ali Javad Porphyry Cu-Au Deposit, Arasbaran Zone, NW Iran”, Open Journal of Geology, 6 (2016) 859-874.
http://dx.doi.org/10.4236/ojg.2016.68066
[15] Calagari A. A., Hosseinzadeh G., “The mineralogy of copper bearing skarn to the east of the Sungun-Chay river, East-Azarbaidjan, Iran”, Journal of Asian Earth Science 28 (2006) 423-438.
[16] Mollai H., Sharma R., Pe-Piper G., “Copper mineralization around the Ahar Batholith, north of Ahar (NW Iran): Evidence for fluid evolution and the origin of the skarn ore deposit”, Ore Geology Reviews 35 (2009) 401-414.
[17] Hassanpour S., “The alteration, mineralogy and geochronology (SHRIMP U–Pb and 40Ar/39Ar) of copper bearing Anjerd skarn, north of the Shayvar Mountain, NW Iran”, International Journal of Earth Sciences 102(3) (2013) 687- 699. https://doi.org/10.1007/s00531-012-0819-7
[18] Hezarkhani A., “Anjerd skarn geochemistry and its association with economic copper mineralization, Azarbaijan-Iran”, 15 (2004) 158-175.
[19] Nakhjavani B., Calagari A. A., Alavi S. G, Siah Cheshm K., “Study of the intrusive body associated with Gowdal skarn (North of Ahar) and its comparison with other skarn granitoids”, Iranian Journal of Petrology, 11(4) (2021) 111-134.
[20] Nakhjavani B., Alavi S. G., “Type of mineralization, Geochemistry of Alteretion and Relation of Gold and associated elements in the Hizeh-jan area (NW Iran) (in Persian)”, Iranian Journal of Crystallography and Mineralogy 26(3) (2018) 673-688.
[21] Pournik P., “Economic geology and Au exploration at Sharafabad-Hizehjan area (northwest of Varzaghan) (in Persian)”, Institute of Earth Science, Geological Survey of Iran, Tehran, Iran, (2002) 201 pp.
[22] Miranvari A. S., Calagari A. A., Siahcheshm K., Sohrabi G., “Geochemical study of alteration zones around Au-bearing silicic veins at Zailic, East of Ahar, East- Azarbaidjan Province”, Iranian Journal of Crystallography and Mineralogy 27 (2) (2019) 347-360.
[23] Aghaei M., Rastad E., Shamanian G. H., Madanipour S., “Characteristics of the gold-bearing and barren quartz veins at the Zaylik-Sarilar epithermal deposit, Ahar-Arasbaran Zone, NW Iran: Evidence from mineralogy, alteration, texture and fluid inclusion”, Ore Geology Reviews,Volume 154 (2023) 105341, ISSN 0169-1368, https://doi.org/10.1016/j.oregeorev.2023.105341.
[24] Asiay Soufiani F., Mokhtari M. A. A., Kouhestani H., Azimzadeh A. M., “Geology, geochemistry and fluid inclusion of Qarachilar Cu-Mo-Au quartz veins, northeast of Kharvana, East Azerbaijan”, Journal of Economic Geology, 10(1) (2018) 139-171. https://doi.org/10.22067/econg.v10i1.58161.
[25] Ferdosi R., Calagari A.A., Hosseinzadeh M. R., Siahcheshm K., “Investigation of petrography, mineralography, and mineralization of gold-bearing epithermal veins in Astarghan area, Kharvana, East Azarbaidjan (in Persian)”, 32th national and 1th international Geosciences Congress. Geological Survey of Iran, Tehran, Iran (2014).
[26] Ferdowsi R., Calagari A.A., Hosseinzadeh M. R., Siahcheshm K., “Petrography, geochemistry and mineral chemistry of Astergan porphyritic stock, Kharvana, Eastern Azarbaijan (in Persian)”, Iranian Journal of Crystallography and Mineralogy, 23(4) (2016) 759–774.
[27] Jamali H., Mehrabi B., “Relationships between arc maturity and Cu-Mo-Au porphyry and related epithermal mineralization at the Cenozoic Arasbaran Magmatic Belt”, Ore Geology Reviews, 65(2) (2015) 487–501. DOI: 10.1016/j.oregeorev.2014.06.017
[28] Jamali H., “Geology, geochemistry, mineralogyand genesis of Mivehrud Au-Cu mineralization, Eastern Azerbaijan Province (in Persian)”, M.Sc. Thesis, Tarbiat Moallem University of Tehran, Tehran, Iran, (1999)172 pp.
[29] Radmard K., Zamanian H., hosainzadeh M., ahmadi khalaji A., “The study of mineralogy, geochemistry and fluid inclusions in quartz veins at the Mazreh Shadi gold deposit”, northeastern Tabriz. Iranian Journal of Crystallography and Mineralogy 25 (4) (2018) 823-844. http://ijcm.ir/article-1-999-en.html.
[30] Baniadam F., “Geology and genesis of goldcopper mineralization in Nabijan area (in Persian)”, M.Sc. Thesis, Institute of Geoscience, Geological Survey of Iran, Tehran, Iran (2003) 167 pp.
[31] Ghadimzadeh H., “Economic geology and Au exploration at Safikhanlou-Noghdouz area (SE Ahar) (in Persian)”, M.Sc. Thesis, Institute of Earth Science, Geological Survey of Iran, Tehran, Iran (2002) 232 pp.
[32] Alavi M., “Tectonics of the Zagros orogenic belt of Iran: new data and interpretations”, Tectonophysics, 229(2) (1994) 211-38. https://doi.org/10.1016/0040-1951(94)90030-2.
[33] Aghanabati A., “Geology of Iran. Geological Survey of Iran Publication (in Persian)”, Tehran (2006).
[34] Babakhani A. R., Lesquer J. L., Rico R., “Geological Quadranglemap of Ahar, 1:250000’, Geological Survey of Iran (1990).
[35] Jahangiri A., “Post-collisional Miocene adakitic volcanism in NW Iran: geochemical and geodynamic implications”, Journal of Asian Earth Sciences 30 (2007) 433-447. https://doi.org/ 10.1016/j.jseaes.2006.11.008.
[36] Castro A., Aghazadeh M., Badrzadeh Z., Chichorro M., “Late Eocene-Oligocene post-collisional monzonitic intrusions from the Alborz magmatic belt, NW Iran. an example of monzonite magma generation from a metasomatized mantle source”, Lithos, 180-181 (2013) 109-127. https://doi.org/10.1016/j.lithos.2013.08.003.
[37] Mehrpartou M., “Contributions to the geology, geochemistry, ore genesis and fluid inclusion investigations on Sungun Cu–Mo porphyry deposit, NW of Iran”, PhD Dissertation, University of Hamburg, Germany, (1993) 245p. https://doi.org/10.1016/j.jseaes.2006.11.008.
[38] Jamali H., Dilek Y., Daliran F., Yaghubpur A., Mehrabi B., “Metallogeny and tectonic evolution of the Cenozoic Ahar-Arasbaran volcanic belt, northern Iran”, International Geology Reviews 52(4-6) (2009) 608-630. https://doi.org/10.1080/00206810903416323.
[39] Jamali H., Mehrabi B., “Relationships between arc maturity and Cu-Mo-Au porphyry and related epithermal mineralization at the Cenozoic Arasbaran Magmatic Belt”, Ore Geology Reviews, 65(2) (2015) 487–501. https://doi.org/10.1016/j.oregeorev.2014.06.017.
[40] Whitney D. L., Evans B. W., “Abbreviations for names of rock-forming minerals”, American Mineralogist 95 (2010) 185–187.
[41] Roedder E., Bodnar R.J., “Geologic pressure determinations from fluid inclusion studies”, Annual Reviews of Earth and Planetary Science 8(1), (1980) 263–301.
https://doi.org/10.1146/annurev.ea.08.050180. 001403
[42] Roedder E., “Fluid inclusions. Reviews in Mineralogy 12”, Mineralogical Society of America, (1984) p 644.
[43] Shepherd T. J., Ranbin A. H., Alderton D. H. M., “A practical guide to fluid inclusion studies”, Blackie, Glasgow (1985) p. 223.
[44] Symons D., Symons T., Sangster D., “Paleomagnetism of the socieyu Cliffs dolostone and the age of the Nanisivk zinc deposits”, Baffin Island, Canada: Mineralum Deposita 35 (2000) 672-682. https://doi:10.1007/s001260050270.
[45] Wilkinson J. J., “Fluid inclusions in hydrothermal ore deposit”, Lithos 55 (2001) 229–72. https://doi.org/10.1016/S0024-4937(00)00047-5.
[46] Ouyang H., Wu X., Mao J.W., Su H., Santosh M., Zhou Z., Li C., “The nature and timing of ore formation in the Budunhua copper deposit, southern Great Xing'an Range: Evidence from geology, fluid inclusions, and U–Pb and Re-Os geochronology”, Ore Geology Reviews 63 (2014) 238–251. https://doi.org/10.1016/j.oregeorev.2014.05.016.
[47] Ahmad S. N., Rose A. W., “Fluid inclusions in porphyry and skarn ores at Santa Rita, New Mexico”, Economic Geology 75 (1980) 229-250. https://doi.org/10.2113/gsecongeo.75.2.229.
[48] Fournier R. O., “Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment”, Econ. Geol. 94 (1999) 1193–1212.
[49] Moncada D., Baker D., Bodnar RJ., ”Mineralogical, petrographic and fluid inclusion evidence for the link between boiling and epithermal Ag-Au mineralization in the La Luz area”, Guanajuato Mining District, México, Ore Geology Reviews 89 (2017) 143-170, ISSN 0169-1368, https://doi.org/10.1016/j.oregeorev.2017.05.024.
[50] Pirajno F., “Hydrothermal processes and mineral system”, Springer Science, New York (2009) p 1273. https://doi.org/10.1007/978-1-4020-8613-7.