کانی‌شناسی و شیمی مگنتیت در کانسار آهن شهرک، ناحیه فلززایی تکاب: گستره‌های کورکورا 2 و شهرک 2

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه ژئوشیمی، دانشکده علوم زمین، دانشگاه خوارزمی، ایران

2 مرکز تحقیقات فراوری مواد معدنی ایران

چکیده

کانسار آهن کورکورا 2 و شهرک 2 از کانسارهای گستره اسکارنی شهرک هستند که در پهنه تکاب قرار دارند. جایگیری توده‌های نفوذی دیوریتی تا گرانودیوریتی و کوارتزدیوریتی در سنگ‌های آتشفشانی و کربناتی، موجب دگرگونی همبری و اسکارن‌زایی آهن شده است. مگنتیت توده‌ای کانه اکسیدی غالب در اسکارن آهن کورکورا 2 و شهرک 2 است. کانی‌های باطله اسکارنی به ترتیب فراوانی، شامل فلوگوپیت، کلسیت، کانی­های رسی، اکتینولیت و کلریت هستند. پیریت و به مقدار کمتر پیروتیت کانه‌های سولفیدی اصلی در کانسارهای مورد بررسی را تشکیل می‌دهند. بررسی شیمی کانی مگنتیت در کانسارهای کورکورا 2 و شهرک 2 نشان داد که این مگنتیت­ها در گستره گرمابی و اسکارن قرار دارند. این بررسی همچنین، نقش فرآیندهای گرمابی و نسبت بالای سیال/سنگ در کانه‌زایی مگنتیت کورکورا 2 و شهرک 2 را در مقایسه با کورکورا 1 و سراب 3 نشان می‌دهد. شواهد کانی‌شناسی و زمین شیمیایی کانسنگ، گویای خاستگاه اسکارنی کانه‌زایی آهن در کانسار کورکورا 2 و شهرک 2 هستند.

کلیدواژه‌ها


عنوان مقاله [English]

Mineralogy and magnetite chemistry of Shahrak iron deposit, Tekab metallogenic area: Kurkora 2 and Shahrak 2 districts

نویسندگان [English]

  • Majid Ghasemi Siani 1
  • Amir Panahi 1
  • Hamed Ebrahimi Fard 1
  • Behrouz Karimi Shahraki 2
1 Department of Geochemistry, Faculty of Earth Sciences, Kharazmi University, Iran
2 Iranian Mineral Processing Research Center, Karaj, Iran
چکیده [English]

Kurkora 2 and Shahrak 2 iron deposits are among the deposits of the Shahrak skarn area, which is located in the Takab zone. The emplacement of dioritic to granodioritic and quartzdioritic intrusive bodies in volcanic and carbonate rocks has caused contact metamorphism and iron skarnification. Massive magnetite is the dominant oxide ore in Kurkora 2 and Shahrak 2 iron skarn. The gangue skarn minerals, in order of abundance, include phlogopite, calcite, clay minerals, actinolite, and chlorite. Pyrite and to a lesser extent pyrrhotite are the principal sulfide minerals in the studied deposits. Mineral chemistry studies of magnetite in Kurkora 2 and Shahrak 2 deposits showed that these magnetites are located in the range of hydrothermal and skarn. Magnetite chemistry studies show the role of hydrothermal processes and high fluid/rock ratio in the magnetite mineralization of Kurkora 2 and Shahrak 2 compared to Kurkora 1 and Sarab 3. The mineralogy and geochemical evidences of the ore is proof of the skarn origin of iron ore formation in Kurkora 2 and Shahrak 2 deposits.

کلیدواژه‌ها [English]

  • Mineral chemistry
  • Mineralization
  • Skarn
  • magnetite
  • Shahrak
  • Kurkora
  • Tekab zone
  1. [1] Beaudoin G., Dupuis C., "Iron-oxide trace element fingerprinting of mineral deposit types. In: Corriveau", L., Mumin, H. (Eds.), Exploring for Iron Oxide Copper-Gold Deposits: Canada and Global Analogues, Short Course Volume. Geological Association of Canada Annual Meeting (2009) 107-121.
  2. [1] Beaudoin G., Dupuis C., "Iron-oxide trace element fingerprinting of mineral deposit types. In: Corriveau", L., Mumin, H. (Eds.), Exploring for Iron Oxide Copper-Gold Deposits: Canada and Global Analogues, Short Course Volume. Geological Association of Canada Annual Meeting (2009) 107-121.
  3. [2] Huberty J.M., Konishi H., Heck P.R., Fournelle J.H., Valley J.W., Xu H., "Silician magnetite from the Dales Gorge Member of the Brockman Iron Formation, Hamersley Group, Western Australia", American Mineralogist 97 (2012) 26-37. [DOI:10.2138/am.2012.3864]
  4. [2] Huberty J.M., Konishi H., Heck P.R., Fournelle J.H., Valley J.W., Xu H., "Silician magnetite from the Dales Gorge Member of the Brockman Iron Formation, Hamersley Group, Western Australia", American Mineralogist 97 (2012) 26-37. [DOI:10.2138/am.2012.3864]
  5. [3] Nadoll P., Angerer T., Mauk J.L., French D., Walshe J., "The chemistry of hydrothermal magnetite: A review", Ore Geology Reviews 61 (2014) 1-32. [DOI:10.1016/j.oregeorev.2013.12.013]
  6. [3] Nadoll P., Angerer T., Mauk J.L., French D., Walshe J., "The chemistry of hydrothermal magnetite: A review", Ore Geology Reviews 61 (2014) 1-32. [DOI:10.1016/j.oregeorev.2013.12.013]
  7. [4] Dare S.A.S., Barnes S.J., Beaudoin G., "Variation in trace element content of magnetite crystallized from a fractionating sulfide liquid, Sudbury, Canada: Implications for provenance discrimination", Geochimica et Cosmochimica Acta 88 (2012) 27-50. [DOI:10.1016/j.gca.2012.04.032]
  8. [4] Dare S.A.S., Barnes S.J., Beaudoin G., "Variation in trace element content of magnetite crystallized from a fractionating sulfide liquid, Sudbury, Canada: Implications for provenance discrimination", Geochimica et Cosmochimica Acta 88 (2012) 27-50. [DOI:10.1016/j.gca.2012.04.032]
  9. [5] Nikolaeva N.V., Aleksandrova T.N., Chanturiya E.L., Afanasova A., "Mineral and Technological Features of Magnetite-Hematite Ores and Their Influence on the Choice of Processing Technology", (2021). [DOI:10.1021/acsomega.1c00129]
  10. [5] Nikolaeva N.V., Aleksandrova T.N., Chanturiya E.L., Afanasova A., "Mineral and Technological Features of Magnetite-Hematite Ores and Their Influence on the Choice of Processing Technology", (2021). [DOI:10.1021/acsomega.1c00129]
  11. [6] She H.D., Fan H.R., Yang K.F., Li X.C., Wang Q.W., Zhang L.F., Liu Sh., Li X.H., Cai Z.H., "In situ trace elements of magnetite in the Bayan Obo REE-Nb-Fe deposit: Implications for the genesis of mesoproterozoic iron mineralization", Ore Geology Reviews 139 (2021) 104574. [DOI:10.1016/j.oregeorev.2021.104574]
  12. [6] She H.D., Fan H.R., Yang K.F., Li X.C., Wang Q.W., Zhang L.F., Liu Sh., Li X.H., Cai Z.H., "In situ trace elements of magnetite in the Bayan Obo REE-Nb-Fe deposit: Implications for the genesis of mesoproterozoic iron mineralization", Ore Geology Reviews 139 (2021) 104574. [DOI:10.1016/j.oregeorev.2021.104574]
  13. [7] Boni M., Gilg H.A., Balassone G., Schneider J., Allen C.R., Moore F., "Hypogene Zn carbonate ores in the Angouran deposit, NW Iran", Mineralium Deposita 42 (2007) 799-820. [DOI:10.1007/s00126-007-0144-4]
  14. [7] Boni M., Gilg H.A., Balassone G., Schneider J., Allen C.R., Moore F., "Hypogene Zn carbonate ores in the Angouran deposit, NW Iran", Mineralium Deposita 42 (2007) 799-820. [DOI:10.1007/s00126-007-0144-4]
  15. [8] Borg G., Daliran F., "Hypogene and supergene formation of sulphides and non-sulphides at the Angouran high-grade zinc deposit, NW-Iran. In: Abstract volume of geoscience Africa", University of the Witwatersrand, Johannesburg (2004) 69-70.
  16. [8] Borg G., Daliran F., "Hypogene and supergene formation of sulphides and non-sulphides at the Angouran high-grade zinc deposit, NW-Iran. In: Abstract volume of geoscience Africa", University of the Witwatersrand, Johannesburg (2004) 69-70.
  17. https://www.academia.edu/14380990/Hypogene_Zn_carbonate_ores_in_the_Angouran_deposit_NW_Iran
  18. https://www.academia.edu/14380990/Hypogene_Zn_carbonate_ores_in_the_Angouran_deposit_NW_Iran
  19. [9] Gilg H.A., Boni M., "Stable isotope studies on Zn and Pb carbonates: Could they play a role in mineral exploration?", Proceedings of ICAM (2004b) 4 p.
  20. [9] Gilg H.A., Boni M., "Stable isotope studies on Zn and Pb carbonates: Could they play a role in mineral exploration?", Proceedings of ICAM (2004b) 4 p.
  21. https://scirp.org/reference/referencespapers?referenceid=2082163
  22. https://scirp.org/reference/referencespapers?referenceid=2082163
  23. [10] Gilg H.A., Boni M., Balassone G., Allen C.R., Banks D., Moore F., "Marble-hosted sulfide ores in the Angouran Zn-(Pb-Ag) deposit, NW Iran: interaction of sedimentary brines with a metamorphic core complex", Mineralium Deposita 31 (2006) 1-16. [DOI:10.1007/s00126-005-0035-5]
  24. [10] Gilg H.A., Boni M., Balassone G., Allen C.R., Banks D., Moore F., "Marble-hosted sulfide ores in the Angouran Zn-(Pb-Ag) deposit, NW Iran: interaction of sedimentary brines with a metamorphic core complex", Mineralium Deposita 31 (2006) 1-16. [DOI:10.1007/s00126-005-0035-5]
  25. [11] Maanijou M., Salemi R., "Mineralogy, chemistry of magnetite and genesis of Korkora-1 iron deposit, east of Takab, NW Iran (in persian)", Journal of Economic Geology 6 (2014) 355-374.‏ [DOI:10.22067/econg.v6i2.22650]
  26. [11] Maanijou M., Salemi R., "Mineralogy, chemistry of magnetite and genesis of Korkora-1 iron deposit, east of Takab, NW Iran (in persian)", Journal of Economic Geology 6 (2014) 355-374.‏ [DOI:10.22067/econg.v6i2.22650]
  27. [12] Maanijou M., Khodaei L., "Petrology and geochemistry of intrusive body of iron deposit of Sarab-3, east of Takab-north west of Iran (in persian)", Petrological Journal 7 (2016) 171-190.‏ [DOI:10.22108/ijp.2016.21023]
  28. [12] Maanijou M., Khodaei L., "Petrology and geochemistry of intrusive body of iron deposit of Sarab-3, east of Takab-north west of Iran (in persian)", Petrological Journal 7 (2016) 171-190.‏ [DOI:10.22108/ijp.2016.21023]
  29. [13] Maanijou M., Khodaie L., "Mineralogy and electron microprobe studies of magnetite in the Sarab-3 iron Ore deposit, southwest of the Shahrak mining region (East Takab) (in persian)", Journal of Economic Geology 10 (2018) 267-293. [DOI:10.22067/econg.v10i1.56522‏]
  30. [13] Maanijou M., Khodaie L., "Mineralogy and electron microprobe studies of magnetite in the Sarab-3 iron Ore deposit, southwest of the Shahrak mining region (East Takab) (in persian)", Journal of Economic Geology 10 (2018) 267-293. [DOI:10.22067/econg.v10i1.56522‏]
  31. [14] Maanijou M., Ferdowsi Rashed M., "Fluid inclusions and sulfur stable isotopes of the Sarab 3 iron ore deposit (the Shahrak mining area-north Bijar) (in persian)", Journal of Economic Geology 12 (2021) 531-561.‏ [DOI:10.22067/econg.v12i4.78330]
  32. [14] Maanijou M., Ferdowsi Rashed M., "Fluid inclusions and sulfur stable isotopes of the Sarab 3 iron ore deposit (the Shahrak mining area-north Bijar) (in persian)", Journal of Economic Geology 12 (2021) 531-561.‏ [DOI:10.22067/econg.v12i4.78330]
  33. [15] Masoumi A., Ansari A.H., Aslani E., "A study on inverse modelling of magnetic data for Korkora 1, Shahrak iron mine in Kurdistan province (in persian)", Journal of Mineral Resources Engineering (JMRE) 2 (2017) 37-47. [DOI:10.30479/jmre.2017.1067]
  34. [15] Masoumi A., Ansari A.H., Aslani E., "A study on inverse modelling of magnetic data for Korkora 1, Shahrak iron mine in Kurdistan province (in persian)", Journal of Mineral Resources Engineering (JMRE) 2 (2017) 37-47. [DOI:10.30479/jmre.2017.1067]
  35. [16] Daliran F., Pride K., Walther J., Berner Z. A., Bakker R.J., "The Angouran Zn (Pb) deposit, NW Iran: Evidence for a two stage, hypogenezincsulfide-zinc carbonate mineralization", Ore Geology Reviews 53 (2013) 373-402. [DOI:10.1016/j.oregeorev.2013.02.002]
  36. [16] Daliran F., Pride K., Walther J., Berner Z. A., Bakker R.J., "The Angouran Zn (Pb) deposit, NW Iran: Evidence for a two stage, hypogenezincsulfide-zinc carbonate mineralization", Ore Geology Reviews 53 (2013) 373-402. [DOI:10.1016/j.oregeorev.2013.02.002]
  37. [17] Ghorbani M., "Economic Geology of Mineral Deposits and Natural Resources of Iran", 1st edition, Arian Zamin Publishers (2007) 492p.
  38. [17] Ghorbani M., "Economic Geology of Mineral Deposits and Natural Resources of Iran", 1st edition, Arian Zamin Publishers (2007) 492p.
  39. [18] Amirian A., Siahcheshm K., "Magnetite geochemistry an approach to determining the physicochemical conditions of Alam-Kandy iron skarn formation, West Mahneshan, Zanjan province (in persian)", Iranian Journal of Crystallography and Mineralogy, 30 (2022) 6-6.‏ http://dx.doi.org/10.52547/ijcm.30.4.653 [DOI:10.52547/ijcm.30.4.653]
  40. [18] Amirian A., Siahcheshm K., "Magnetite geochemistry an approach to determining the physicochemical conditions of Alam-Kandy iron skarn formation, West Mahneshan, Zanjan province (in persian)", Iranian Journal of Crystallography and Mineralogy, 30 (2022) 6-6.‏ http://dx.doi.org/10.52547/ijcm.30.4.653 [DOI:10.52547/ijcm.30.4.653]
  41. [19] Sadat Mazhari M., Saadat S., Mazaheri S. A., Homam S. M., "Magnetite Chemistry: Evidence of Skarn Fe Mineralization in the Ahangaran Range, Eastern Iran (in persian)", Iranian Journal of Crystallography and Mineralogy, 31 (2023) 455-466.‏ http://dx.doi.org/10.61186/ijcm.31.3.455 [DOI:10.61186/ijcm.31.3.455]
  42. [19] Sadat Mazhari M., Saadat S., Mazaheri S. A., Homam S. M., "Magnetite Chemistry: Evidence of Skarn Fe Mineralization in the Ahangaran Range, Eastern Iran (in persian)", Iranian Journal of Crystallography and Mineralogy, 31 (2023) 455-466.‏ http://dx.doi.org/10.61186/ijcm.31.3.455 [DOI:10.61186/ijcm.31.3.455]
  43. [20] Ghasemi Siani M., Mehrabi B., "Mineralogy and mineral chemistry of silicate mineral of Dardvay Fe skarn ore deposit (Sangan mining area, NE Iran) (in persian)", Iranian Journal of Crystallography and Mineralogy, 26 (2019) 871-884. http://dx.doi.org/10.29252/ijcm.26.4.871 [DOI:10.29252/ijcm.26.4.871]
  44. [20] Ghasemi Siani M., Mehrabi B., "Mineralogy and mineral chemistry of silicate mineral of Dardvay Fe skarn ore deposit (Sangan mining area, NE Iran) (in persian)", Iranian Journal of Crystallography and Mineralogy, 26 (2019) 871-884. http://dx.doi.org/10.29252/ijcm.26.4.871 [DOI:10.29252/ijcm.26.4.871]
  45. [21] Karimpour M. H., Malekzadeh Shafaroudi A., "Skarn geochemistry-mineralogy and petrology of source rock Sangan Iron mine, Khorasan Razavi, Iran (in persian)", Scientific Quarterly Journal of Geosciences 17 (2007) 108-125.‏ [DOI:10.22071/gsj.2008.58191]
  46. [21] Karimpour M. H., Malekzadeh Shafaroudi A., "Skarn geochemistry-mineralogy and petrology of source rock Sangan Iron mine, Khorasan Razavi, Iran (in persian)", Scientific Quarterly Journal of Geosciences 17 (2007) 108-125.‏ [DOI:10.22071/gsj.2008.58191]
  47. [22] Simon A.C., Knipping J., Reich M., Barra F., Deditius A.P., "Kiruna-type Iron Oxide-Apatite (IOA) and Iron Oxide Copper-Gold (IOCG) deposits formed by a combination of igneous and magmatic-hydrothermal processes: Evidence from the Chilean Iron Belt", SEG Special Publication 21 (2018) 89-114. [DOI:10.5382/SP.21.06]
  48. [22] Simon A.C., Knipping J., Reich M., Barra F., Deditius A.P., "Kiruna-type Iron Oxide-Apatite (IOA) and Iron Oxide Copper-Gold (IOCG) deposits formed by a combination of igneous and magmatic-hydrothermal processes: Evidence from the Chilean Iron Belt", SEG Special Publication 21 (2018) 89-114. [DOI:10.5382/SP.21.06]
  49. [23] Technoexport, "Detail geology prospecting in the Anarak Area Central Iran (in persian)", Geological Survey of Iran Report No. 9 (1981).
  50. [23] Technoexport, "Detail geology prospecting in the Anarak Area Central Iran (in persian)", Geological Survey of Iran Report No. 9 (1981).
  51. [24] Richards J.P., "Tectonic, magmatic, and metallogenic evolution of the Tethyan orogen. From subduction to collision", Ore Geology Review 70 (2015) 323-345. [DOI:10.1016/j.oregeorev.2014.11.009]
  52. [24] Richards J.P., "Tectonic, magmatic, and metallogenic evolution of the Tethyan orogen. From subduction to collision", Ore Geology Review 70 (2015) 323-345. [DOI:10.1016/j.oregeorev.2014.11.009]
  53. [25] Alavi M., "Tectonics of the Zagros orogenic belt of Iran: new data and interpretations", Tectonophysics 229 (1994) 211-238. [DOI:10.1016/0040-1951(94)90030-2]
  54. [25] Alavi M., "Tectonics of the Zagros orogenic belt of Iran: new data and interpretations", Tectonophysics 229 (1994) 211-238. [DOI:10.1016/0040-1951(94)90030-2]
  55. [26] Haghipour A., "Étude géologique de la région de Biabanak-Bafq (Iran Central); petrologie et tectonique du socle Precambrien et de sa couverture", (1974).
  56. [26] Haghipour A., "Étude géologique de la région de Biabanak-Bafq (Iran Central); petrologie et tectonique du socle Precambrien et de sa couverture", (1974).
  57. [27] Pournik P., "Report of mineral geology and assessment of iron reserve of Shahrak iron ore deposit (in persian)", Mineral Exploration and Drilling Engineering Company (2016) 350p.
  58. [27] Pournik P., "Report of mineral geology and assessment of iron reserve of Shahrak iron ore deposit (in persian)", Mineral Exploration and Drilling Engineering Company (2016) 350p.
  59. [28] Whitney D. L., Evans B. W., "Abbreviations for names of rock-forming minerals", American mineralogist, 95 (2010) 185-187.‏ [DOI:10.2138/am.2010.3371]
  60. [28] Whitney D. L., Evans B. W., "Abbreviations for names of rock-forming minerals", American mineralogist, 95 (2010) 185-187.‏ [DOI:10.2138/am.2010.3371]
  61. [29] Beaudoin G., Dupuis C., Gosselin P., Jebrak M., "Mineral chemistry of iron oxides: application to mineral exploration", In: C.J. Andrew (Editor), Ninth Biennial SGA meeting, SGA, Dublin (2007) 497−500 pp. [DOI:10.22067/econg.v6i2.22650]
  62. [29] Beaudoin G., Dupuis C., Gosselin P., Jebrak M., "Mineral chemistry of iron oxides: application to mineral exploration", In: C.J. Andrew (Editor), Ninth Biennial SGA meeting, SGA, Dublin (2007) 497−500 pp. [DOI:10.22067/econg.v6i2.22650]
  63. [30] Nadoll P., Mauk J.L., Hayes T.S., Koenig A.E., Box S.E., "Geochemistry of magnetite from hydrothermal ore deposits and host rocks of the Mesoproterozoic Belt Supergroup, United States", Economic Geology 107 (2012) 1275-1292. [DOI:10.2113/econgeo.107.6.1275]
  64. [30] Nadoll P., Mauk J.L., Hayes T.S., Koenig A.E., Box S.E., "Geochemistry of magnetite from hydrothermal ore deposits and host rocks of the Mesoproterozoic Belt Supergroup, United States", Economic Geology 107 (2012) 1275-1292. [DOI:10.2113/econgeo.107.6.1275]
  65. [31] Nadoll P., "Geochemistry of magnetite from hydrothermal ore deposits and host rocks - Case studies from the Proterozoic Belt Supergroup, Cu-Mo-porphyry + skarn and Climax-Mo deposits in the western United States", PhD thesis in University of Auckland (2011). [DOI:10.2113/econgeo.107.6.1275]
  66. [31] Nadoll P., "Geochemistry of magnetite from hydrothermal ore deposits and host rocks - Case studies from the Proterozoic Belt Supergroup, Cu-Mo-porphyry + skarn and Climax-Mo deposits in the western United States", PhD thesis in University of Auckland (2011). [DOI:10.2113/econgeo.107.6.1275]
  67. [32] Nadoll P., Mauk J.L., Leveille R.A., Koenig A.E., "Geochemistry of magnetite from porphyry Cu and skarn deposits in the southwestern United States" Mineralium Deposita 50 (2014) 493-515.

    https://doi.org/10.1007/s00126-014-0539-y [DOI:10.1007/s00126-014-0539-y.]
  68. [32] Nadoll P., Mauk J.L., Leveille R.A., Koenig A.E., "Geochemistry of magnetite from porphyry Cu and skarn deposits in the southwestern United States" Mineralium Deposita 50 (2014) 493-515.

    https://doi.org/10.1007/s00126-014-0539-y [DOI:10.1007/s00126-014-0539-y.]
  69. [33] Dupuis C., Beaudoin G., "Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types", Mineralium Deposita, 46 (2011) 319-335.‏ [DOI:10.1007/s00126-011-0334-y]
  70. [33] Dupuis C., Beaudoin G., "Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types", Mineralium Deposita, 46 (2011) 319-335.‏ [DOI:10.1007/s00126-011-0334-y]
  71. [34] Angerer T., Hagemann S.G., Danyushevsky L.V., "Geochemical evolution of the banded iron formation-hosted high-grade iron ore system in the Koolyanobbing Greenstone Belt, Western Australian", Economic Geology 107 (2012) 599-644. [DOI:10.2113/econgeo.107.4.599]
  72. [34] Angerer T., Hagemann S.G., Danyushevsky L.V., "Geochemical evolution of the banded iron formation-hosted high-grade iron ore system in the Koolyanobbing Greenstone Belt, Western Australian", Economic Geology 107 (2012) 599-644. [DOI:10.2113/econgeo.107.4.599]
  73. [35] Nystroem J. O., Henriquez F., "Magmatic features of iron ores of the Kiruna type in Chile and Sweden; ore textures and magnetite geochemistry", Economic Geology 90 (1995) 473-475. [DOI:10.2113/gsecongeo.90.2.473]
  74. [35] Nystroem J. O., Henriquez F., "Magmatic features of iron ores of the Kiruna type in Chile and Sweden; ore textures and magnetite geochemistry", Economic Geology 90 (1995) 473-475. [DOI:10.2113/gsecongeo.90.2.473]
  75. [36] Schwartz M. O., Melcher F., "The Falémé iron district, Senegal", Economic Geology 99 (2004) 917-939.‏ [DOI:10.2113/gsecongeo.99.5.917]
  76. [36] Schwartz M. O., Melcher F., "The Falémé iron district, Senegal", Economic Geology 99 (2004) 917-939.‏ [DOI:10.2113/gsecongeo.99.5.917]
  77. [37] Frost B. R., "Magnetic petrology; factors that control the occurrence of magnetite in crustal rocks", Reviews in Mineralogy and Geochemistry 25 (1991) 489-509.‏ [DOI:10.1515/9781501508684-017]
  78. [37] Frost B. R., "Magnetic petrology; factors that control the occurrence of magnetite in crustal rocks", Reviews in Mineralogy and Geochemistry 25 (1991) 489-509.‏ [DOI:10.1515/9781501508684-017]
  79. [38] Sun S.S., McDonough W.F., "Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes", Geological Society, London, Special Publications 42 (1989) 313-345. [DOI:10.1144/GSL.SP.1989.042.01.19]
  80. [38] Sun S.S., McDonough W.F., "Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes", Geological Society, London, Special Publications 42 (1989) 313-345. [DOI:10.1144/GSL.SP.1989.042.01.19]
  81. [39] Rudnick R.L., Gao S., "Composition of the continental crust", Treatise on Geochemistry 3 (2003) 1-64. [DOI:10.1016/B0-08-043751-6/03016-4]
  82. [39] Rudnick R.L., Gao S., "Composition of the continental crust", Treatise on Geochemistry 3 (2003) 1-64. [DOI:10.1016/B0-08-043751-6/03016-4]
  83. [40] Meinert L.D., "Skarn and skarn deposits", Geoscience Canada 19 (1992) 145-162. https://journals.lib.unb.ca/index.php/gc/article/view/3773
  84. [40] Meinert L.D., "Skarn and skarn deposits", Geoscience Canada 19 (1992) 145-162. https://journals.lib.unb.ca/index.php/gc/article/view/3773
  85. [41] Tosdal R.M., Dilles J.H., Cooke D.R., "From source to sinks in auriferous magmatic-hydrothermal porphyry and epithermal deposits", Elements 5 (2009) 289-295. [DOI:10.2113/gselements.5.5.289]
  86. [41] Tosdal R.M., Dilles J.H., Cooke D.R., "From source to sinks in auriferous magmatic-hydrothermal porphyry and epithermal deposits", Elements 5 (2009) 289-295. [DOI:10.2113/gselements.5.5.289]
  87. [42] Hu H., Li J.W., Lentz D., Ren Z., Zhao X.-F., Deng X.D., Hall D., "Dissolution-reprecipitation process of magnetite from the Chengchao iron deposit: insights into ore genesis and implication for in-situ chemical analysis of magnetite", Ore Geology Review 57 (2014) 393-405. [DOI:10.1016/j.oregeorev.2013.07.008]
  88. [42] Hu H., Li J.W., Lentz D., Ren Z., Zhao X.-F., Deng X.D., Hall D., "Dissolution-reprecipitation process of magnetite from the Chengchao iron deposit: insights into ore genesis and implication for in-situ chemical analysis of magnetite", Ore Geology Review 57 (2014) 393-405. [DOI:10.1016/j.oregeorev.2013.07.008]
  89. [43] Dare S.A., Barnes S.-J., Beaudoin G., Méric J., Boutroy E., Potvin Doucet C., "Trace elements in magnetite as petrogenetic indicators", Mineralium Deposita 49 (2014) 785-796. https://ui.adsabs.harvard.edu/link_gateway/2014MinDe..49..785D/doi:10.1007/s00126-014-0529-0 [DOI:10.1007/s00126-014-0529-0]
  90. [43] Dare S.A., Barnes S.-J., Beaudoin G., Méric J., Boutroy E., Potvin Doucet C., "Trace elements in magnetite as petrogenetic indicators", Mineralium Deposita 49 (2014) 785-796. https://ui.adsabs.harvard.edu/link_gateway/2014MinDe..49..785D/doi:10.1007/s00126-014-0529-0 [DOI:10.1007/s00126-014-0529-0]
  91. [44] Huang X.W., Gao J.F., Qi L., Zhou M.F., "In-situ LA-ICP-MS trace elemental analyses of magnetite and Re-Os dating of pyrite: the Tianhu hydrothermally remobilized sedimentary Fe deposit, NW China", Ore Geology Review 65 (2015) 900-916. [DOI:10.1016/j.oregeorev.2014.07.020]
  92. [44] Huang X.W., Gao J.F., Qi L., Zhou M.F., "In-situ LA-ICP-MS trace elemental analyses of magnetite and Re-Os dating of pyrite: the Tianhu hydrothermally remobilized sedimentary Fe deposit, NW China", Ore Geology Review 65 (2015) 900-916. [DOI:10.1016/j.oregeorev.2014.07.020]
  93. https://doi.org/10.1016/j.oregeorev.2014.07.020 [DOI:10.1016/j.oregeorev.2014.07.020.]
  94. https://doi.org/10.1016/j.oregeorev.2014.07.020 [DOI:10.1016/j.oregeorev.2014.07.020.]