اثر مقدار حلال بر ساخت NiCo-ZIF و MgCo-ZIF با استفاده از چارچوب فلزی-آلی ZIF-67

نویسندگان

1 آزمایشگاه تحقیقاتی انرژی‌های تجدیدپذیر، مغناطیس و نانوفناوری، گروه فیزیک دانشگاه فردوسی مشهد، مشهد، ایران.

2 گروه فیزیک دانشکده علوم، دانشگاه فردوسی مشهد، مشهد، ایران.

3 شرکت آتی کاوان انرژی پارت، گروه پارت لاستیک، شهرک صنعتی فناوری‌های برتر، مشهد، ایران.

چکیده

در این پژوهش، دو بلورNiCo-ZIF  و MgCo-ZIF با افزودن عناصر نیکل و منیزیم به چارچوب­ فلزی-آلی ایمیدازولات زئولیتی ZIF-67، به روش حلال­گرمایی در دمای اتاق و با مقادیر مختلف 50، 100 و 150 میلی­لیتر از حلال متانول تهیه شدند. اثر مقدار حلال بر ساختار، اندازه ذره و ریخت­شناسی نمونه­ها با روش‌های مختلف مشخصه­یابی بررسی شد. تحلیل پراش پرتو ایکس نشان داد که با افزایش مقدار حلال از 50 به 100 میلی­لیتر، شدت قلّه­ها کاهش و با 150 میلی­لیتر، شدت قلّه­ها افزایش می­یابد. این روند ناشی از تغییر در بلورینگی ذرات به علت رقیق شدن محیط واکنش از یک سو و افزایش سرعت هسته­زایی از سوی دیگر است. بر پایه تصاویر میکروسکوپ الکترونی روبشی گسیل میدانی (FESEM) از نمونه­های­ NiCo-ZIF تهیه شده  50، 100 و 150 میلی­لیتر با حلال، میانگین اندازه ذرات به ترتیب از 845 به 550 و 391 نانومتر کاهش می­یابد. این رفتار کاهشی برای نمونه­های­ MgCo-ZIF با مقادیر 656، 411 و 299 نانومتر به دست آمد. علت این امر، افزایش تعداد مکان­های فعال در مرحله هسته­زایی بلور است. نتایج طیف­سنجی های پراکندگی انرژی بلوری پرتوی X (EDX) و تبدیل فوریه فروسرخ (FTIR) نشان داد که قابلیت اتصال متفاوت یون­های فلزی Co2+،Ni2+  و  Mg2+به لیگاند آلی، باعث تفاوت مقدار این عناصر در نمونه­ها می­شود. نتیجه این پژوهش نشان می­دهد که مقدار حلال یکی از عوامل مهم در ساخت بلورهای ZIF است که کنترل آن می­تواند به دستیابی به ذرات با اندازه و ریخت­شناسی مطلوب کمک کند.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Solvent Amount on Synthesis of NiCo-ZIF and MgCo-ZIF Using the Metal-Organic Framework, ZIF-67.

نویسندگان [English]

  • Fatemeh shekofte 1
  • Hadi Arabi 1
  • Shaban Reza Ghorbani 2
  • Nasrin Azad 3
1 Research Laboratory of Renewable Energy, Magnetism and Nanotechnology, Department of Physics, Ferdowsi University of Mashhad, Mashhad, Iran.
2 Department of Physics, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
3 Ati Kavan Energy Part Company, Rubber Part Group, Top Technologies Industrial Estate, Mashhad, Iran.
چکیده [English]

In this research, two NiCo-ZIF and MgCo-ZIF crystals were prepared by adding nickel and magnesium elements to the ZIF-67 metal-organic framework. The preparation route was performed by solvothermal method at room temperature using different amounts of methanol solvent, 50, 100, and 150 ml. Effect of the amount of solvent on the structure, particle size, and morphology of the samples was investigated by various characterization methods. X-ray diffraction analysis showed that the intensity of the peaks decreases with increasing the amount of solvent from 50 to 100 ml, while at 150 ml, the intensity of the peaks increases. This variation in the peak intensities and consequently particle crystallinity is due to the dilution of the reaction medium on one side and the increase in nucleation rate on the other side. The FESEM images of the NiCo-ZIF sample, prepared at 50, 100 and 150 ml solvent, indicate that the average particle size reduces from 845 to 550 and 391 nm, respectively. The unique reduction behavior was obtained for the MgCo-ZIF sample with values of 656, 411, and 299 nm, respectively. This is due to the increasing number of active sites in the crystal nucleation stage. The results of EDX and FTIR indicated that the fact of different binding ability of metal ions Co2+, Ni2+, and Mg2+ to the organic ligands causes the difference in the amount of these elements in the samples. The outcome of this study shows that the amount of solvent is one of the essential factors in the synthesis of ZIF crystals, whose control can help to obtain particles with the desired size and morphology.

کلیدواژه‌ها [English]

  • metal-organic frameworks
  • Zeolite Imidazolate Frameworks
  • ZIF-67
  • Solvent Amount
  • particle size
  • morphology
  1. [1] Lee Y.R., Kim J., Ahn W.S., "Synthesis of metal-organic frameworks: A mini review", Korean J. Chem. Eng. 30 (2013) 1667-1680.

    https://doi.org/10.1007/s11814-013-0140-6 [DOI:10.1007/s11814-013-0140-6.]
  2. [1] Lee Y.R., Kim J., Ahn W.S., "Synthesis of metal-organic frameworks: A mini review", Korean J. Chem. Eng. 30 (2013) 1667-1680.

    https://doi.org/10.1007/s11814-013-0140-6 [DOI:10.1007/s11814-013-0140-6.]
  3. [2] Dutta S., Liu Z., Han H.S., Indra A., Song T., "Electrochemical Energy Conversion and Storage with Zeolitic Imidazolate Framework Derived Materials", A Perspective, ChemElectroChem. 5 (2018) 3571-3588. [DOI:10.1002/celc.201801144]
  4. [2] Dutta S., Liu Z., Han H.S., Indra A., Song T., "Electrochemical Energy Conversion and Storage with Zeolitic Imidazolate Framework Derived Materials", A Perspective, ChemElectroChem. 5 (2018) 3571-3588. [DOI:10.1002/celc.201801144]
  5. https://doi.org/10.1002/celc.201801144 [DOI:10.1002/celc.201801144.]
  6. https://doi.org/10.1002/celc.201801144 [DOI:10.1002/celc.201801144.]
  7. [3] Duan C., Yu Y., Hu H., "Recent progress on synthesis of ZIF-67-based materials and their application to heterogeneous catalysis", Green Energy Environ. (2021). [DOI:10.1016/j.gee.2020.12.023]
  8. [3] Duan C., Yu Y., Hu H., "Recent progress on synthesis of ZIF-67-based materials and their application to heterogeneous catalysis", Green Energy Environ. (2021). [DOI:10.1016/j.gee.2020.12.023]
  9. https://doi.org/10.1016/j.gee.2020.12.023 [DOI:10.1016/j.gee.2020.12.023.]
  10. https://doi.org/10.1016/j.gee.2020.12.023 [DOI:10.1016/j.gee.2020.12.023.]
  11. [4] Jadhav H.S., Bandal H.A., Ramakrishna S., Kim H., "Critical Review, Recent Updates on Zeolitic Imidazolate Framework-67 (ZIF-67) and Its Derivatives for Electrochemical Water Splitting", Adv. Mater. 34 (2022).

    https://doi.org/10.1002/adma.202107072 [DOI:10.1002/adma.202107072.]
  12. [4] Jadhav H.S., Bandal H.A., Ramakrishna S., Kim H., "Critical Review, Recent Updates on Zeolitic Imidazolate Framework-67 (ZIF-67) and Its Derivatives for Electrochemical Water Splitting", Adv. Mater. 34 (2022).

    https://doi.org/10.1002/adma.202107072 [DOI:10.1002/adma.202107072.]
  13. [5] Zhang J., Zhang T., Yu D., Xiao K., Hong Y., "Transition from ZIF-L-Co to ZIF-67: a new insight into the structural evolution of zeolitic imidazolate frameworks (ZIFs) in aqueous systems", CrystEngComm. 17 (2015) 8212-8215.

    https://doi.org/10.1039/C5CE01531F [DOI:10.1039/C5CE01531F.]
  14. [5] Zhang J., Zhang T., Yu D., Xiao K., Hong Y., "Transition from ZIF-L-Co to ZIF-67: a new insight into the structural evolution of zeolitic imidazolate frameworks (ZIFs) in aqueous systems", CrystEngComm. 17 (2015) 8212-8215.

    https://doi.org/10.1039/C5CE01531F [DOI:10.1039/C5CE01531F.]
  15. [6] Qian J., Sun F., Qin L., "Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals", Mater. Lett. 82 (2012) 220-223.

    https://doi.org/10.1016/j.matlet.2012.05.077 [DOI:10.1016/j.matlet.2012.05.077.]
  16. [6] Qian J., Sun F., Qin L., "Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals", Mater. Lett. 82 (2012) 220-223.

    https://doi.org/10.1016/j.matlet.2012.05.077 [DOI:10.1016/j.matlet.2012.05.077.]
  17. [7] Hongwei C., Shengzhi Z., Kejian Y., Dechun L., "Research progress on the preparation and nonlinear optical properties of zeolite imidazolate framework materials", China Laser. 48 (2021) 1203001. http://www.opticsjournal.net/Articles/OJ1c13cd1b08e8e218/FullText. [DOI:10.3788/CJL202148.1203001]
  18. [7] Hongwei C., Shengzhi Z., Kejian Y., Dechun L., "Research progress on the preparation and nonlinear optical properties of zeolite imidazolate framework materials", China Laser. 48 (2021) 1203001. http://www.opticsjournal.net/Articles/OJ1c13cd1b08e8e218/FullText. [DOI:10.3788/CJL202148.1203001]
  19. [8] Kuwamura N., Konno T., "Heterometallic coordination polymers as heterogeneous electrocatalysts", Inorg. Chem. Front. 8 (2021) 2634-2649.

    https://doi.org/10.1039/D1QI00112D [DOI:10.1039/d1qi00112d.]
  20. [8] Kuwamura N., Konno T., "Heterometallic coordination polymers as heterogeneous electrocatalysts", Inorg. Chem. Front. 8 (2021) 2634-2649.

    https://doi.org/10.1039/D1QI00112D [DOI:10.1039/d1qi00112d.]
  21. [9] Li L., Zhao J., Zhu Y., Pan X., Wang H., Xu J., "Bimetallic Ni/Co-ZIF-67 derived NiCo2Se4/N-doped porous carbon nanocubes with excellent sodium storage performance", Electrochim. Acta. 353 (2020) 136532. [DOI:10.1016/j.electacta.2020.136532]
  22. [9] Li L., Zhao J., Zhu Y., Pan X., Wang H., Xu J., "Bimetallic Ni/Co-ZIF-67 derived NiCo2Se4/N-doped porous carbon nanocubes with excellent sodium storage performance", Electrochim. Acta. 353 (2020) 136532. [DOI:10.1016/j.electacta.2020.136532]
  23. https://doi.org/10.1016/j.electacta.2020.136532 [DOI:10.1016/j.electacta.2020.136532.]
  24. https://doi.org/10.1016/j.electacta.2020.136532 [DOI:10.1016/j.electacta.2020.136532.]
  25. [10] Yang W., Shi X., Li Y., Pang H., "Manganese-doped cobalt zeolitic imidazolate framework with highly enhanced performance for supercapacitor", J. Energy Storage. 26 (2019) 101018.

    https://doi.org/10.1016/j.est.2019.101018 [DOI:10.1016/j.est.2019.101018.]
  26. [10] Yang W., Shi X., Li Y., Pang H., "Manganese-doped cobalt zeolitic imidazolate framework with highly enhanced performance for supercapacitor", J. Energy Storage. 26 (2019) 101018.

    https://doi.org/10.1016/j.est.2019.101018 [DOI:10.1016/j.est.2019.101018.]
  27. [11] Chen W., Jia Y., Yu X., Yue M., Wu H., Wang S., Liu J., Zhao Y., Zhang J., "Facile synthesis of bimetallic zeolite imidazolate framework with enhanced lithium storage performance", Ionics (Kiel). 26 (2020) 2107-2115.

    https://doi.org/10.1007/s11581-019-03390-x [DOI:10.1007/s11581-019-03390-x.]
  28. [11] Chen W., Jia Y., Yu X., Yue M., Wu H., Wang S., Liu J., Zhao Y., Zhang J., "Facile synthesis of bimetallic zeolite imidazolate framework with enhanced lithium storage performance", Ionics (Kiel). 26 (2020) 2107-2115.

    https://doi.org/10.1007/s11581-019-03390-x [DOI:10.1007/s11581-019-03390-x.]
  29. [12] Lou X., Ning Y., Li C., Hu X., Shen M., Hu B., "Bimetallic zeolite imidazolate framework for enhanced lithium storage boosted by the redox participation of nitrogen atoms", Sci. China Mater. 61 (2018) 1040-1048. [DOI:10.1007/s40843-017-9200-5]
  30. [12] Lou X., Ning Y., Li C., Hu X., Shen M., Hu B., "Bimetallic zeolite imidazolate framework for enhanced lithium storage boosted by the redox participation of nitrogen atoms", Sci. China Mater. 61 (2018) 1040-1048. [DOI:10.1007/s40843-017-9200-5]
  31. https://doi.org/10.1007/s40843-017-9200-5 [DOI:10.1007/s40843-017-9200-5.]
  32. https://doi.org/10.1007/s40843-017-9200-5 [DOI:10.1007/s40843-017-9200-5.]
  33. [13] Wang H., Bai Y., Jiang X.B., Zeng M., "Bimetal-Organic Framework derived from ZIF-67 as anodes for high performance lithium-ion batteries", Appl. Surf. Sci. 546 (2021) 149119.

    https://doi.org/10.1016/j.apsusc.2021.149119 [DOI:10.1016/j.apsusc.2021.149119.]
  34. [13] Wang H., Bai Y., Jiang X.B., Zeng M., "Bimetal-Organic Framework derived from ZIF-67 as anodes for high performance lithium-ion batteries", Appl. Surf. Sci. 546 (2021) 149119.

    https://doi.org/10.1016/j.apsusc.2021.149119 [DOI:10.1016/j.apsusc.2021.149119.]
  35. [14] Akhundzadeh Tezerjani A., Halladj R., Askari S., "Different view of solvent effect on the synthesis methods of zeolitic imidazolate framework-8 to tuning the crystal structure and properties", RSC Adv. 11 (2021) 19914-19923.

    https://doi.org/10.1039/D1RA02856A [DOI:10.1039/d1ra02856a.]
  36. [14] Akhundzadeh Tezerjani A., Halladj R., Askari S., "Different view of solvent effect on the synthesis methods of zeolitic imidazolate framework-8 to tuning the crystal structure and properties", RSC Adv. 11 (2021) 19914-19923.

    https://doi.org/10.1039/D1RA02856A [DOI:10.1039/d1ra02856a.]
  37. [15] Wu H., Qian X., Zhu H., Ma S., Zhu G., Long Y., "Controlled synthesis of highly stable zeolitic imidazolate framework-67 dodecahedra and their use towards the templated formation of a hollow Co3O4 catalyst for CO oxidation", RSC Adv. 6 (2016) 6915-6920. [DOI:10.1039/C5RA18557B]
  38. [15] Wu H., Qian X., Zhu H., Ma S., Zhu G., Long Y., "Controlled synthesis of highly stable zeolitic imidazolate framework-67 dodecahedra and their use towards the templated formation of a hollow Co3O4 catalyst for CO oxidation", RSC Adv. 6 (2016) 6915-6920. [DOI:10.1039/C5RA18557B]
  39. https://doi.org/10.1039/C5RA18557B [DOI:10.1039/c5ra18557b.]
  40. https://doi.org/10.1039/C5RA18557B [DOI:10.1039/c5ra18557b.]
  41. [16] Li L., Zhao J., Ma F., He D., Liu P., Li W., Zhang K., Chen X., Song L., "The Mg doping ZIF-8 loaded with Icariin and its antibacterial and osteogenic performances", J. Mater. Sci. Mater. Med. 34 (2023) 50. [DOI:10.1007/s10856-023-06755-x]
  42. [16] Li L., Zhao J., Ma F., He D., Liu P., Li W., Zhang K., Chen X., Song L., "The Mg doping ZIF-8 loaded with Icariin and its antibacterial and osteogenic performances", J. Mater. Sci. Mater. Med. 34 (2023) 50. [DOI:10.1007/s10856-023-06755-x]
  43. https://doi.org/10.1007/s10856-023-06755-x [DOI:10.1007/s10856-023-06755-x.]
  44. https://doi.org/10.1007/s10856-023-06755-x [DOI:10.1007/s10856-023-06755-x.]
  45. [17] Chen L., Wang H. F., Li C., Xu Q., "Bimetallic metal-organic frameworks and their derivatives", Chem. Sci. 11 (2020) 5369-5403.

    https://doi.org/10.1039/D0SC01432J [DOI:10.1039/d0sc01432j.]
  46. [17] Chen L., Wang H. F., Li C., Xu Q., "Bimetallic metal-organic frameworks and their derivatives", Chem. Sci. 11 (2020) 5369-5403.

    https://doi.org/10.1039/D0SC01432J [DOI:10.1039/d0sc01432j.]
  47. [18] Ediati R., Elfianuar P., Santoso E., Sulistiono D.O., Nadjib M., "Synthesis of MCM-41/ZIF-67 Composite for Enhanced Adsorptive Removal of Methyl Orange in Aqueous Solution", in: M. Krishnappa (Ed.), IntechOpen, Rijeka, 2019: p. Ch. 3. [DOI:10.5772/intechopen.84691]
  48. [18] Ediati R., Elfianuar P., Santoso E., Sulistiono D.O., Nadjib M., "Synthesis of MCM-41/ZIF-67 Composite for Enhanced Adsorptive Removal of Methyl Orange in Aqueous Solution", in: M. Krishnappa (Ed.), IntechOpen, Rijeka, 2019: p. Ch. 3. [DOI:10.5772/intechopen.84691]
  49. https://doi.org/10.5772/intechopen.84691 [DOI:10.5772/intechopen.84691.]
  50. https://doi.org/10.5772/intechopen.84691 [DOI:10.5772/intechopen.84691.]
  51. [19] Asadi F., Azizi S.N., Ghasemi S., "A novel non-precious catalyst containing transition metal in nanoporous cobalt based metal-organic framework (ZIF-67)for electrooxidation of methanol", J. Electroanal. Chem. 847 (2019).

    https://doi.org/10.1016/j.jelechem.2019.05.063 [DOI:10.1016/j.jelechem.2019.05.063.]
  52. [19] Asadi F., Azizi S.N., Ghasemi S., "A novel non-precious catalyst containing transition metal in nanoporous cobalt based metal-organic framework (ZIF-67)for electrooxidation of methanol", J. Electroanal. Chem. 847 (2019).

    https://doi.org/10.1016/j.jelechem.2019.05.063 [DOI:10.1016/j.jelechem.2019.05.063.]
  53. [20] Kwon H.T., Jeong H.-K., Lee A.S., An H.S., Lee J.S., "Heteroepitaxially Grown Zeolitic Imidazolate Framework Membranes with Unprecedented Propylene/Propane Separation Performances", J. Am. Chem. Soc. 137 (2015) 12304-12311.

    https://doi.org/10.1021/jacs.5b06730 [DOI:10.1021/jacs.5b06730.]
  54. [20] Kwon H.T., Jeong H.-K., Lee A.S., An H.S., Lee J.S., "Heteroepitaxially Grown Zeolitic Imidazolate Framework Membranes with Unprecedented Propylene/Propane Separation Performances", J. Am. Chem. Soc. 137 (2015) 12304-12311.

    https://doi.org/10.1021/jacs.5b06730 [DOI:10.1021/jacs.5b06730.]
  55. [21] Zulfa L.L., Ediati R., Hidayat A.R.P., Utomo W.P., Subagyo R., Kusumawati E.N., Kusumawati Y., Hartanto D., "One-Pot Room Temperature Synthesis of Nizn-Zif for Degradation of Methylene Blue: Tuning Electronic Structure for Enhanced Photocatalytic Performance", Available SSRN 4588344. (n.d.).
  56. [21] Zulfa L.L., Ediati R., Hidayat A.R.P., Utomo W.P., Subagyo R., Kusumawati E.N., Kusumawati Y., Hartanto D., "One-Pot Room Temperature Synthesis of Nizn-Zif for Degradation of Methylene Blue: Tuning Electronic Structure for Enhanced Photocatalytic Performance", Available SSRN 4588344. (n.d.).
  57. [22] Geng P., Cao S., Guo X., Ding J., Zhang S., Zheng M., Pang H., "Polypyrrole coated hollow metal-organic framework composites for lithium-sulfur batteries", J. Mater. Chem. A. 7 (2019) 19465-19470.

    https://doi.org/10.1039/C9TA05812E [DOI:10.1039/C9TA05812E.]
  58. [22] Geng P., Cao S., Guo X., Ding J., Zhang S., Zheng M., Pang H., "Polypyrrole coated hollow metal-organic framework composites for lithium-sulfur batteries", J. Mater. Chem. A. 7 (2019) 19465-19470.

    https://doi.org/10.1039/C9TA05812E [DOI:10.1039/C9TA05812E.]
  59. [23] Shahsavari M., Mortazavi M., Tajik S., Sheikhshoaie I., Beitollahi H., "Synthesis and Characterization of GO/ZIF-67 Nanocomposite: Investigation of Catalytic Activity for the Determination of Epinine in the Presence of Dobutamine", Micromachines. 13 (2022).

    https://doi.org/10.3390/mi13010088 [DOI:10.3390/mi13010088.]
  60. [23] Shahsavari M., Mortazavi M., Tajik S., Sheikhshoaie I., Beitollahi H., "Synthesis and Characterization of GO/ZIF-67 Nanocomposite: Investigation of Catalytic Activity for the Determination of Epinine in the Presence of Dobutamine", Micromachines. 13 (2022).

    https://doi.org/10.3390/mi13010088 [DOI:10.3390/mi13010088.]