Synthesis and characterization of La2(WO4)3 nanoparticles doped with rare earth element and its application as down conversion material in dye sensitized solar cells

Document Type : Original Article

Authors

1 Institue of Nano Science and Nano Technology, University of Kashan, Kashan

2 School of Physics, Damghan University, Damghan

3 Department of Physics, University of Kashan, Kashan

Abstract

In this research, pure and doped with Dy3+ and Gd3+ ions, as impurity of La2(WO4)3 nanoparticles, were successfully synthesis using hydrothermal method and the effect of annealing temperature, type and concentration of dopant on their structural and optical properties were investigated and used as down converter material in dye sensitized solar cell. The samples were characterized by X-ray diffraction, field emission scanning electron microscopy (equipped with spectra energy dispersive analysis of X-ray), transmission electron microscopy, ultraviolet-visible spectrometer and photoluminescence spectrometer. The X-ray diffraction results showed that the nanoparticles are polycrystal with monoclinic structure. Optical studies show that these nanoparticles can absorb ultraviolet light and emit visible light in the wavelength ranging from 360 nm to 500 nm. The presence of a thin layer of La2(WO4)3:Dy nanoparticles on the dye sensitized solar cell increased the efficiency by 10.6%.

Keywords


  1. [1] Shamoon A., Haleem A., Bahl S., Javaid S., Garg S.B., "Role of energy technologies in response to climate change", Materials Today: Proceedings, 62 (2022) 63-69. [DOI:10.1016/j.matpr.2022.02.025]
  2. [1] Shamoon A., Haleem A., Bahl S., Javaid S., Garg S.B., "Role of energy technologies in response to climate change", Materials Today: Proceedings, 62 (2022) 63-69. [DOI:10.1016/j.matpr.2022.02.025]
  3. [2] Singh S., "Energy Crisis and Climate Change: Global Concerns and Their Solutions", Energy: Crises, Challenges and Solutions, DOI (2021) 1-17. [DOI:10.1002/9781119741503.ch1]
  4. [2] Singh S., "Energy Crisis and Climate Change: Global Concerns and Their Solutions", Energy: Crises, Challenges and Solutions, DOI (2021) 1-17. [DOI:10.1002/9781119741503.ch1]
  5. [3] Kalair A., Abas N., Saleem M.S., Kalair A.R., Khan N., "Role of energy storage systems in energy transition from fossil fuels to renewables", Energy Storage, 3 (2021) e135. [DOI:10.1002/est2.135]
  6. [3] Kalair A., Abas N., Saleem M.S., Kalair A.R., Khan N., "Role of energy storage systems in energy transition from fossil fuels to renewables", Energy Storage, 3 (2021) e135. [DOI:10.1002/est2.135]
  7. [4] Mukhopadhyay S., "Solar energy and gasification of MSW: two promising green energy options, Green Energy Systems", Elsevier, 2023, pp. 93-125. [DOI:10.1016/B978-0-323-95108-1.00003-3]
  8. [4] Mukhopadhyay S., "Solar energy and gasification of MSW: two promising green energy options, Green Energy Systems", Elsevier, 2023, pp. 93-125. [DOI:10.1016/B978-0-323-95108-1.00003-3]
  9. [5] Agrawal S., Soni R., "Renewable energy: Sources, importance and prospects for sustainable future", Energy: Crises, Challenges and Solutions, DOI (2021) 131-150. [DOI:10.1002/9781119741503.ch7]
  10. [5] Agrawal S., Soni R., "Renewable energy: Sources, importance and prospects for sustainable future", Energy: Crises, Challenges and Solutions, DOI (2021) 131-150. [DOI:10.1002/9781119741503.ch7]
  11. [6] Dixit R., "Solar technologies and their implementations: A review, Materials Today: Proceedings", 28 (2020) 2137-2148. [DOI:10.1016/j.matpr.2020.04.134]
  12. [6] Dixit R., "Solar technologies and their implementations: A review, Materials Today: Proceedings", 28 (2020) 2137-2148. [DOI:10.1016/j.matpr.2020.04.134]
  13. [7] Mahalingam S., Manap A., Omar A., Low F.W., Afandi N., Chia C.H., Abd Rahim N., "Functionalized graphene quantum dots for dye-sensitized solar cell: Key challenges, recent developments and future prospects", Renewable and Sustainable Energy Reviews, 144 (2021) 110999. [DOI:10.1016/j.rser.2021.110999]
  14. [7] Mahalingam S., Manap A., Omar A., Low F.W., Afandi N., Chia C.H., Abd Rahim N., "Functionalized graphene quantum dots for dye-sensitized solar cell: Key challenges, recent developments and future prospects", Renewable and Sustainable Energy Reviews, 144 (2021) 110999. [DOI:10.1016/j.rser.2021.110999]
  15. [8] Devadiga D., Selvakumar M., Shetty P., Santosh M., "Recent progress in dye sensitized solar cell materials and photo-supercapacitors: A review", Journal of Power Sources, 493 (2021) 229698. [DOI:10.1016/j.jpowsour.2021.229698]
  16. [8] Devadiga D., Selvakumar M., Shetty P., Santosh M., "Recent progress in dye sensitized solar cell materials and photo-supercapacitors: A review", Journal of Power Sources, 493 (2021) 229698. [DOI:10.1016/j.jpowsour.2021.229698]
  17. [9] Faraz S.M., Mazhar M., Shah W., Noor H., Awan Z.H., Sayyad M.H., "Comparative study of impedance spectroscopy and photovoltaic properties of metallic and natural dye based dye sensitized solar cells", Physica B: Condensed Matter, 602 (2021) 412567. [DOI:10.1016/j.physb.2020.412567]
  18. [9] Faraz S.M., Mazhar M., Shah W., Noor H., Awan Z.H., Sayyad M.H., "Comparative study of impedance spectroscopy and photovoltaic properties of metallic and natural dye based dye sensitized solar cells", Physica B: Condensed Matter, 602 (2021) 412567. [DOI:10.1016/j.physb.2020.412567]
  19. [10] Mallikarjun A., Siva Kumar J., Sreekanth T., Sangeetha M., Mettu M.R., Espenti C.S., Jaipal Reddy M., "Facile fabrication of NiO doped PVDF-co-HFP/Mg (ClO4)2 polymer composite membrane as a counter electrode in low-cost dye-sensitized solar cells", Polymer-Plastics Technology and Materials, 62 (2023) 145-161. [DOI:10.1080/25740881.2022.2096471]
  20. [10] Mallikarjun A., Siva Kumar J., Sreekanth T., Sangeetha M., Mettu M.R., Espenti C.S., Jaipal Reddy M., "Facile fabrication of NiO doped PVDF-co-HFP/Mg (ClO4)2 polymer composite membrane as a counter electrode in low-cost dye-sensitized solar cells", Polymer-Plastics Technology and Materials, 62 (2023) 145-161. [DOI:10.1080/25740881.2022.2096471]
  21. [11] Sen A., Putra M.H., Biswas A.K., Behera A.K., Groβ A., "Insight on the choice of sensitizers/dyes for dye sensitized solar cells: A review", Dyes and Pigments, DOI (2023) 111087. [DOI:10.1016/j.dyepig.2023.111087]
  22. [11] Sen A., Putra M.H., Biswas A.K., Behera A.K., Groβ A., "Insight on the choice of sensitizers/dyes for dye sensitized solar cells: A review", Dyes and Pigments, DOI (2023) 111087. [DOI:10.1016/j.dyepig.2023.111087]
  23. [12] Grobelny A., Shen Z., Eickemeyer F.T., Antariksa N.F., Zapotoczny S., Zakeeruddin S.M., Grätzel M., "A Molecularly Tailored Photosensitizer with an Efficiency of 13.2% for Dye‐Sensitized Solar Cells", Advanced Materials, 35 (2023) 2207785. [DOI:10.1002/adma.202207785]
  24. [12] Grobelny A., Shen Z., Eickemeyer F.T., Antariksa N.F., Zapotoczny S., Zakeeruddin S.M., Grätzel M., "A Molecularly Tailored Photosensitizer with an Efficiency of 13.2% for Dye‐Sensitized Solar Cells", Advanced Materials, 35 (2023) 2207785. [DOI:10.1002/adma.202207785]
  25. [13] Mejica G.F.C., Unpaprom Y., Ramaraj R., "Fabrication and performance evaluation of dye-sensitized solar cell integrated with natural dye from Strobilanthes cusia under different counter-electrode materials", Applied Nanoscience, 13 (2023) 1073-1083. [DOI:10.1007/s13204-021-01853-0]
  26. [13] Mejica G.F.C., Unpaprom Y., Ramaraj R., "Fabrication and performance evaluation of dye-sensitized solar cell integrated with natural dye from Strobilanthes cusia under different counter-electrode materials", Applied Nanoscience, 13 (2023) 1073-1083. [DOI:10.1007/s13204-021-01853-0]
  27. [14] Yadav V., Chaudhary S., Negi C.M.S., Gupta S.K., "Textile dyes as photo-sensitizer in the dye sensitized solar cells", Optical Materials, 109 (2020) 110306. [DOI:10.1016/j.optmat.2020.110306]
  28. [14] Yadav V., Chaudhary S., Negi C.M.S., Gupta S.K., "Textile dyes as photo-sensitizer in the dye sensitized solar cells", Optical Materials, 109 (2020) 110306. [DOI:10.1016/j.optmat.2020.110306]
  29. [15] Oviedo A.M., Thi, H.T., Van Q.C., Nguyen H.H., "Physicochemical properties of Fe-doped TiO2 and the application in Dye-sensitized solar cells", Optical Materials, 137 (2023) 113587. [DOI:10.1016/j.optmat.2023.113587]
  30. [15] Oviedo A.M., Thi, H.T., Van Q.C., Nguyen H.H., "Physicochemical properties of Fe-doped TiO2 and the application in Dye-sensitized solar cells", Optical Materials, 137 (2023) 113587. [DOI:10.1016/j.optmat.2023.113587]
  31. [16] Chen X., Huang Y., Chen Z., "Potential evaluation of an annular thermoelectric cooler driven by a dye-sensitized solar cell", Solar Energy, 258 (2023) 351-360. [DOI:10.1016/j.solener.2023.04.006]
  32. [16] Chen X., Huang Y., Chen Z., "Potential evaluation of an annular thermoelectric cooler driven by a dye-sensitized solar cell", Solar Energy, 258 (2023) 351-360. [DOI:10.1016/j.solener.2023.04.006]
  33. [17] de Haro J.C., Tatsi E., Fagiolari L., Bonomo M., Barolo C., Turri S., Bella F., Griffini G., "Lignin-based polymer electrolyte membranes for sustainable aqueous dye-sensitized solar cells", ACS Sustainable Chemistry & Engineering, 9 (2021) 8550-8560. [DOI:10.1021/acssuschemeng.1c01882]
  34. [17] de Haro J.C., Tatsi E., Fagiolari L., Bonomo M., Barolo C., Turri S., Bella F., Griffini G., "Lignin-based polymer electrolyte membranes for sustainable aqueous dye-sensitized solar cells", ACS Sustainable Chemistry & Engineering, 9 (2021) 8550-8560. [DOI:10.1021/acssuschemeng.1c01882]
  35. [18] Kokkonen M., Talebi P., Zhou J., Asgari S., Soomro S.A., Elsehrawy S.A., Halme J., Ahmad S., Hagfeldt A., Hashmi S.G., "Advanced research trends in dye-sensitized solar cells", Journal of Materials Chemistry A, 9 (2021) 10527-10545. [DOI:10.1039/D1TA00690H]
  36. [18] Kokkonen M., Talebi P., Zhou J., Asgari S., Soomro S.A., Elsehrawy S.A., Halme J., Ahmad S., Hagfeldt A., Hashmi S.G., "Advanced research trends in dye-sensitized solar cells", Journal of Materials Chemistry A, 9 (2021) 10527-10545. [DOI:10.1039/D1TA00690H]
  37. [19] Day J., Senthilarasu S., Mallick T.K., "Improving spectral modification for applications in solar cells: A review", Renewable Energy, 132 (2019) 186-205. [DOI:10.1016/j.renene.2018.07.101]
  38. [19] Day J., Senthilarasu S., Mallick T.K., "Improving spectral modification for applications in solar cells: A review", Renewable Energy, 132 (2019) 186-205. [DOI:10.1016/j.renene.2018.07.101]
  39. [20] Strümpel C., McCann M., Beaucarne G., Arkhipov V., Slaoui A., Švrček V., Del Cañizo C., Tobias I., "Modifying the solar spectrum to enhance silicon solar cell efficiency-An overview of available materials", Solar energy materials and solar cells, 91 (2007) 238-249. [DOI:10.1016/j.solmat.2006.09.003]
  40. [20] Strümpel C., McCann M., Beaucarne G., Arkhipov V., Slaoui A., Švrček V., Del Cañizo C., Tobias I., "Modifying the solar spectrum to enhance silicon solar cell efficiency-An overview of available materials", Solar energy materials and solar cells, 91 (2007) 238-249. [DOI:10.1016/j.solmat.2006.09.003]
  41. [21] Chen C., Zheng S., Song H., "Photon management to reduce energy loss in perovskite solar cells", Chemical Society Reviews, 50 (2021) 7250-7329. [DOI:10.1039/D0CS01488E]
  42. [21] Chen C., Zheng S., Song H., "Photon management to reduce energy loss in perovskite solar cells", Chemical Society Reviews, 50 (2021) 7250-7329. [DOI:10.1039/D0CS01488E]
  43. [22] Rajeswari R., Islavath N., Raghavender M., Giribabu L., "Recent progress and emerging applications of rare earth doped phosphor materials for dye‐sensitized and perovskite solar cells: a review", The Chemical Record, 20 (2020) 65-88. [DOI:10.1002/tcr.201900008]
  44. [22] Rajeswari R., Islavath N., Raghavender M., Giribabu L., "Recent progress and emerging applications of rare earth doped phosphor materials for dye‐sensitized and perovskite solar cells: a review", The Chemical Record, 20 (2020) 65-88. [DOI:10.1002/tcr.201900008]
  45. [23] Teymourinia H., Salavati-Niasari M., Amiri O., Farangi M., "Facile synthesis of graphene quantum dots from corn powder and their application as down conversion effect in quantum dot-dye-sensitized solar cell", Journal of Molecular Liquids, 251 (2018) 267-272. [DOI:10.1016/j.molliq.2017.12.059]
  46. [23] Teymourinia H., Salavati-Niasari M., Amiri O., Farangi M., "Facile synthesis of graphene quantum dots from corn powder and their application as down conversion effect in quantum dot-dye-sensitized solar cell", Journal of Molecular Liquids, 251 (2018) 267-272. [DOI:10.1016/j.molliq.2017.12.059]
  47. [24] Shen L., Chen B., Pun E., Lin H., "Sm-doped alkaline earth borate glasses as UV→ visible photon conversion layer for solar cells", Journal of Luminescence, 160 (2015) 138-144. [DOI:10.1016/j.jlumin.2014.11.052]
  48. [24] Shen L., Chen B., Pun E., Lin H., "Sm-doped alkaline earth borate glasses as UV→ visible photon conversion layer for solar cells", Journal of Luminescence, 160 (2015) 138-144. [DOI:10.1016/j.jlumin.2014.11.052]
  49. [25] Kim J., Lee J., Lee J.M., Facchetti A., Marks T.J., Park S.K., "Recent Advances in Low‐Dimensional Nanomaterials for Photodetectors", Small Methods, DOI (2023) 2300246. [DOI:10.1002/smtd.202300246]
  50. [25] Kim J., Lee J., Lee J.M., Facchetti A., Marks T.J., Park S.K., "Recent Advances in Low‐Dimensional Nanomaterials for Photodetectors", Small Methods, DOI (2023) 2300246. [DOI:10.1002/smtd.202300246]
  51. [26] Qu J., Li S., Zhong B., Deng B., Shu Y., Cai Y., Hu J., Li C.M., "Two-dimensional nanomaterials: synthesis and applications in photothermal catalysis", Nanoscale, 15 (2023) 2455-2469. [DOI:10.1039/D2NR06092B]
  52. [26] Qu J., Li S., Zhong B., Deng B., Shu Y., Cai Y., Hu J., Li C.M., "Two-dimensional nanomaterials: synthesis and applications in photothermal catalysis", Nanoscale, 15 (2023) 2455-2469. [DOI:10.1039/D2NR06092B]
  53. [27] E. N., F. M., C. Z., "Study of structural, optical, and sensory ethanol properties of tin oxide nanoparticles synthesized by microwave method", Iranian Journal of Crystallography and Mineralogy, 29 (2021) 677-688. [DOI:10.52547/ijcm.29.3.677]
  54. [27] E. N., F. M., C. Z., "Study of structural, optical, and sensory ethanol properties of tin oxide nanoparticles synthesized by microwave method", Iranian Journal of Crystallography and Mineralogy, 29 (2021) 677-688. [DOI:10.52547/ijcm.29.3.677]
  55. [28] Singh S., Diwakar A.K., Kashyap P., Verma A., "Synthesis, Characterization & Luminescence Properties of Rare Earth Nano Phosphors Doped Eu &Gd", Journal of Optoelectronics Laser, 41 (2022) 238-242.
  56. [28] Singh S., Diwakar A.K., Kashyap P., Verma A., "Synthesis, Characterization & Luminescence Properties of Rare Earth Nano Phosphors Doped Eu &Gd", Journal of Optoelectronics Laser, 41 (2022) 238-242.
  57. [29] Natarajan D., Z. Ye, L. Wang, L. Ge, J.L. Pathak, "Rare earth smart nanomaterials for bone tissue engineering and implantology: Advances, challenges, and prospects", Bioengineering & Translational Medicine, 7 (2022) e10262. [DOI:10.1002/btm2.10262]
  58. [29] Natarajan D., Z. Ye, L. Wang, L. Ge, J.L. Pathak, "Rare earth smart nanomaterials for bone tissue engineering and implantology: Advances, challenges, and prospects", Bioengineering & Translational Medicine, 7 (2022) e10262. [DOI:10.1002/btm2.10262]
  59. [30] Gao F., Wu G., Zhou H., Bao D., "Strong upconversion luminescence properties of Yb3+ and Er3+ codoped Bi4Ti3O12 ferroelectric thin films", Journal of Applied Physics, 106 (2009). [DOI:10.1063/1.3273477]
  60. [30] Gao F., Wu G., Zhou H., Bao D., "Strong upconversion luminescence properties of Yb3+ and Er3+ codoped Bi4Ti3O12 ferroelectric thin films", Journal of Applied Physics, 106 (2009). [DOI:10.1063/1.3273477]
  61. [31] Sundaresan P., Gnanaprakasam P., Chen S.-M., Mangalaraja R.V., Lei W., Hao Q., "Simple sonochemical synthesis of lanthanum tungstate (La2(WO4)3) nanoparticles as an enhanced electrocatalyst for the selective electrochemical determination of anti-scald-inhibitor diphenylamine", Ultrasonics Sonochemistry, 58 (2019) 104647. [DOI:10.1016/j.ultsonch.2019.104647]
  62. [31] Sundaresan P., Gnanaprakasam P., Chen S.-M., Mangalaraja R.V., Lei W., Hao Q., "Simple sonochemical synthesis of lanthanum tungstate (La2(WO4)3) nanoparticles as an enhanced electrocatalyst for the selective electrochemical determination of anti-scald-inhibitor diphenylamine", Ultrasonics Sonochemistry, 58 (2019) 104647. [DOI:10.1016/j.ultsonch.2019.104647]
  63. [32] Mani S., Vediyappan V., Chen, S.-M. Madhu R., Pitchaimani V., Chang J.-Y., Liu S.-B., "Hydrothermal synthesis of NiWO4 crystals for high performance non-enzymatic glucose biosensors", Scientific reports, 6 (2016) 24128. [DOI:10.1038/srep24128]
  64. [32] Mani S., Vediyappan V., Chen, S.-M. Madhu R., Pitchaimani V., Chang J.-Y., Liu S.-B., "Hydrothermal synthesis of NiWO4 crystals for high performance non-enzymatic glucose biosensors", Scientific reports, 6 (2016) 24128. [DOI:10.1038/srep24128]
  65. [33] Sobhani-Nasab A., Naderi H., Rahimi-Nasrabadi M., Ganjali M.R., "Evaluation of supercapacitive behavior of samarium tungstate nanoparticles synthesized via sonochemical method", Journal of Materials Science: Materials in Electronics, 28 (2017) 8588-8595. [DOI:10.1007/s10854-017-6582-6]
  66. [33] Sobhani-Nasab A., Naderi H., Rahimi-Nasrabadi M., Ganjali M.R., "Evaluation of supercapacitive behavior of samarium tungstate nanoparticles synthesized via sonochemical method", Journal of Materials Science: Materials in Electronics, 28 (2017) 8588-8595. [DOI:10.1007/s10854-017-6582-6]
  67. [34] Shi X., Wang Z., Takei T., Wang X., Zhu Q., Li X., Kim B.-N., Sun X., Li J.-G., "Selective crystallization of four tungstates (La2W3O12, La2W2O9, La14W8O45, and La6W2O15) via hydrothermal reaction and comparative study of Eu3+ luminescence", Inorganic Chemistry, 57 (2018) 6632-6640.
  68. [34] Shi X., Wang Z., Takei T., Wang X., Zhu Q., Li X., Kim B.-N., Sun X., Li J.-G., "Selective crystallization of four tungstates (La2W3O12, La2W2O9, La14W8O45, and La6W2O15) via hydrothermal reaction and comparative study of Eu3+ luminescence", Inorganic Chemistry, 57 (2018) 6632-6640.
  69. [35] Demiaï A., Derbal M., Guerbous L., Rekik B., "Structure, optical and photoluminescence properties of LiGd1− xErx (WO4)2 green luminescence phosphor", Optical Materials, 65 (2017) 137-141. [DOI:10.1016/j.optmat.2016.10.026]
  70. [35] Demiaï A., Derbal M., Guerbous L., Rekik B., "Structure, optical and photoluminescence properties of LiGd1− xErx (WO4)2 green luminescence phosphor", Optical Materials, 65 (2017) 137-141. [DOI:10.1016/j.optmat.2016.10.026]
  71. [36] Kaczmarek A.M., Van Deun R., "Rare earth tungstate and molybdate compounds-from 0D to 3D architectures", Chemical Society Reviews, 42 (2013) 8835-8848. [DOI:10.1039/c3cs60166h]
  72. [36] Kaczmarek A.M., Van Deun R., "Rare earth tungstate and molybdate compounds-from 0D to 3D architectures", Chemical Society Reviews, 42 (2013) 8835-8848. [DOI:10.1039/c3cs60166h]
  73. [37] Huang S., Zhang X., Wang L., Bai L., Xu J., Li C., Yang P., "Controllable synthesis and tunable luminescence properties of Y2 (WO4)3: Ln3+(Ln= Eu, Yb/Er, Yb/Tm and Yb/Ho) 3D hierarchical architectures", Dalton transactions, 41 (2012) 5634-5642. [DOI:10.1039/c2dt30221g]
  74. [37] Huang S., Zhang X., Wang L., Bai L., Xu J., Li C., Yang P., "Controllable synthesis and tunable luminescence properties of Y2 (WO4)3: Ln3+(Ln= Eu, Yb/Er, Yb/Tm and Yb/Ho) 3D hierarchical architectures", Dalton transactions, 41 (2012) 5634-5642. [DOI:10.1039/c2dt30221g]
  75. [38] Schustereit T., Schleid T., Hartenbach I., "Syntheses and crystal structures of the rare-earth metal (III) bromide ortho-oxidotungstates (VI) with the formula REBr [WO4](RE= Y, Gd-Yb)", Solid State Sciences, 48 (2015) 218-224. [DOI:10.1016/j.solidstatesciences.2015.08.013]
  76. [38] Schustereit T., Schleid T., Hartenbach I., "Syntheses and crystal structures of the rare-earth metal (III) bromide ortho-oxidotungstates (VI) with the formula REBr [WO4](RE= Y, Gd-Yb)", Solid State Sciences, 48 (2015) 218-224. [DOI:10.1016/j.solidstatesciences.2015.08.013]
  77. [39] Burcham L.J., Wachs I.E., "Vibrational analysis of the two non-equivalent, tetrahedral tungstate (WO4) units in Ce2(WO4)3 and La2(WO4)3", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 54 (1998) 1355-1368. [DOI:10.1016/S1386-1425(98)00036-5]
  78. [39] Burcham L.J., Wachs I.E., "Vibrational analysis of the two non-equivalent, tetrahedral tungstate (WO4) units in Ce2(WO4)3 and La2(WO4)3", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 54 (1998) 1355-1368. [DOI:10.1016/S1386-1425(98)00036-5]
  79. [40] Rahimi-Nasrabadi M., Pourmortazavi S.M., Aghazadeh M., Ganjali M.R., Karimi M.S., Norouzi P., "Synthesis of nano-structured lanthanum tungstates photocatalysts", Journal of Materials Science: Materials in Electronics, 28 (2017) 7600-7608. [DOI:10.1007/s10854-017-6452-2]
  80. [40] Rahimi-Nasrabadi M., Pourmortazavi S.M., Aghazadeh M., Ganjali M.R., Karimi M.S., Norouzi P., "Synthesis of nano-structured lanthanum tungstates photocatalysts", Journal of Materials Science: Materials in Electronics, 28 (2017) 7600-7608. [DOI:10.1007/s10854-017-6452-2]
  81. [41] Kuriakose S., Hitha H., Jose A., John M., Varghese T., "Structural and optical characterization of lanthanum tungstate nanoparticles synthesized by chemical precipitation route and their photocatalytic activity", Optical Materials, 99 (2020) 109571. [DOI:10.1016/j.optmat.2019.109571]
  82. [41] Kuriakose S., Hitha H., Jose A., John M., Varghese T., "Structural and optical characterization of lanthanum tungstate nanoparticles synthesized by chemical precipitation route and their photocatalytic activity", Optical Materials, 99 (2020) 109571. [DOI:10.1016/j.optmat.2019.109571]
  83. [42] Baby B., Thomas S., Krishnapriya T., Jose J., Biju P., Joseph C., "Optimized microwave assisted synthesis of La2(WO4)3: Tb3+ phosphors and analysis of photoluminescence behavior", Journal of Luminescence, 254 (2023) 119510. ( [DOI:10.1016/j.jlumin.2022.119510]
  84. [42] Baby B., Thomas S., Krishnapriya T., Jose J., Biju P., Joseph C., "Optimized microwave assisted synthesis of La2(WO4)3: Tb3+ phosphors and analysis of photoluminescence behavior", Journal of Luminescence, 254 (2023) 119510. ( [DOI:10.1016/j.jlumin.2022.119510]
  85. [43] Karthikeyan D., Vijayakumar K., Suhasini P., Dhanusha A., Girisun T.S., "Third-order nonlinear optical responses of Cr3+ ions on La2(WO4)3 nanoparticles for optical limiting applications", Journal of Photochemistry and Photobiology A: Chemistry, 436 (2023) 114377. [DOI:10.1016/j.jphotochem.2022.114377]
  86. [43] Karthikeyan D., Vijayakumar K., Suhasini P., Dhanusha A., Girisun T.S., "Third-order nonlinear optical responses of Cr3+ ions on La2(WO4)3 nanoparticles for optical limiting applications", Journal of Photochemistry and Photobiology A: Chemistry, 436 (2023) 114377. [DOI:10.1016/j.jphotochem.2022.114377]
  87. [44] Kuriakose S., Hitha H., Jose A., John M., Varghese T., "Studies on the effect of Tb doping on the structural and optical properties of La2(WO4)3 nanoparticles", Materials Today: Proceedings, DOI(2023). [DOI:10.1016/j.matpr.2023.11.132]
  88. [44] Kuriakose S., Hitha H., Jose A., John M., Varghese T., "Studies on the effect of Tb doping on the structural and optical properties of La2(WO4)3 nanoparticles", Materials Today: Proceedings, DOI(2023). [DOI:10.1016/j.matpr.2023.11.132]
  89. [45] Zahedifar M., Chamanzadeh Z., Madani M., Moradi M., Sharifpour N., "Synthesis and characterization of GdVO4: Dy3+ nanosheets as down converter: application in dye-sensitized solar cells", Journal of Materials Science: Materials in Electronics, 27 (2016) 4447-4456. [DOI:10.1007/s10854-016-4316-9]
  90. [45] Zahedifar M., Chamanzadeh Z., Madani M., Moradi M., Sharifpour N., "Synthesis and characterization of GdVO4: Dy3+ nanosheets as down converter: application in dye-sensitized solar cells", Journal of Materials Science: Materials in Electronics, 27 (2016) 4447-4456. [DOI:10.1007/s10854-016-4316-9]
  91. [46] Zahedifar M., Chamanzadeh Z., Mashkani S.H., "Synthesis of LaVO4: Dy3+ luminescent nanostructure and optimization of its performance as down-converter in dye-sensitized solar cells", Journal of luminescence, 135 (2013) 66-73. [DOI:10.1016/j.jlumin.2012.10.028]
  92. [46] Zahedifar M., Chamanzadeh Z., Mashkani S.H., "Synthesis of LaVO4: Dy3+ luminescent nanostructure and optimization of its performance as down-converter in dye-sensitized solar cells", Journal of luminescence, 135 (2013) 66-73. [DOI:10.1016/j.jlumin.2012.10.028]
  93. [47] Motevalizadeh L., Sepahvand F., "Investigation of the effect of annealing temperature on lattice micro strains of SnO2 nano particles prepared by sol-gel method, Iranian Journal of Crystallography and Mineralogy", 24 (2016) 493-502.
  94. [47] Motevalizadeh L., Sepahvand F., "Investigation of the effect of annealing temperature on lattice micro strains of SnO2 nano particles prepared by sol-gel method, Iranian Journal of Crystallography and Mineralogy", 24 (2016) 493-502.
  95. [48] Grobelna B., Szabelski M., Kledzik K., Kłonkowski A.M., "Luminescent properties of Sm (III) ions in Ln2(WO4)3 entrapped in silica xerogel", Journal of non-crystalline solids, 353 (2007) 2861-2866. [DOI:10.1016/j.jnoncrysol.2007.06.007]
  96. [48] Grobelna B., Szabelski M., Kledzik K., Kłonkowski A.M., "Luminescent properties of Sm (III) ions in Ln2(WO4)3 entrapped in silica xerogel", Journal of non-crystalline solids, 353 (2007) 2861-2866. [DOI:10.1016/j.jnoncrysol.2007.06.007]
  97. [49] George T., Joseph S., Sunny A.T., Mathew S., "Fascinating morphologies of lead tungstate nanostructures by chimie douce approach", Journal of Nanoparticle Research, 10 (2008) 567-575. [DOI:10.1007/s11051-007-9285-8]
  98. [49] George T., Joseph S., Sunny A.T., Mathew S., "Fascinating morphologies of lead tungstate nanostructures by chimie douce approach", Journal of Nanoparticle Research, 10 (2008) 567-575. [DOI:10.1007/s11051-007-9285-8]
  99. [50] Ronda C., "Phosphors for lamps and displays: an applicational view", Journal of Alloys and Compounds, 225 (1995) 534-538. [DOI:10.1016/0925-8388(94)07065-2]
  100. [50] Ronda C., "Phosphors for lamps and displays: an applicational view", Journal of Alloys and Compounds, 225 (1995) 534-538. [DOI:10.1016/0925-8388(94)07065-2]
  101. [51] Ghaleghafi E., "Fabrication, characterization and investigation of gas sensing properties of MoO3 thin films", Iranian Journal of Crystallography and Mineralogy, 27 (2019) 475-486. [DOI:10.29252/ijcm.27.2.475]
  102. [51] Ghaleghafi E., "Fabrication, characterization and investigation of gas sensing properties of MoO3 thin films", Iranian Journal of Crystallography and Mineralogy, 27 (2019) 475-486. [DOI:10.29252/ijcm.27.2.475]
  103. [52] Gupta S.K., Sudarshan K., Ghosh P., Sanyal K., Srivastava A., Arya A., Pujari P., Kadam R., "Luminescence of undoped and Eu3+ doped nanocrystalline SrWO4 scheelite: time resolved fluorescence complimented by DFT and positron annihilation spectroscopic studies", RSC advances, 6 (2016) 3792-3805. [DOI:10.1039/C5RA23876E]
  104. [52] Gupta S.K., Sudarshan K., Ghosh P., Sanyal K., Srivastava A., Arya A., Pujari P., Kadam R., "Luminescence of undoped and Eu3+ doped nanocrystalline SrWO4 scheelite: time resolved fluorescence complimented by DFT and positron annihilation spectroscopic studies", RSC advances, 6 (2016) 3792-3805. [DOI:10.1039/C5RA23876E]
  105. [53] Ding B., Han C., Zheng L., Zhang J., Wang R., Tang Z., "Tuning oxygen vacancy photoluminescence in monoclinic Y2WO6 by selectively occupying yttrium sites using lanthanum", Scientific Reports, 5 (2015) 9443. [DOI:10.1038/srep09443]
  106. [53] Ding B., Han C., Zheng L., Zhang J., Wang R., Tang Z., "Tuning oxygen vacancy photoluminescence in monoclinic Y2WO6 by selectively occupying yttrium sites using lanthanum", Scientific Reports, 5 (2015) 9443. [DOI:10.1038/srep09443]