Synthesis and characterization of recyclable Ag2S/ZnS nanophotocatalyst ‎coated with Fe3O4 nanoparticles in methyl red dye degradation

Document Type : Original Article

Authors

1 Department of physics, Faculty of science, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.

2 Department of chemistry, Faculty of science, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran


  1. [1] Al-Ghouti M. A., Khraisheh M. A. M., Allen S. J., Ahmad M. N., "The removal of dyes from textile wastewater: a study of the physical characteristics and adsorption mechanisms of diatomaceous earth", Journal of environmental management, 69 (2003) 229-238. [DOI:10.1016/j.jenvman.2003.09.005]
  2. [1] Al-Ghouti M. A., Khraisheh M. A. M., Allen S. J., Ahmad M. N., "The removal of dyes from textile wastewater: a study of the physical characteristics and adsorption mechanisms of diatomaceous earth", Journal of environmental management, 69 (2003) 229-238. [DOI:10.1016/j.jenvman.2003.09.005]
  3. [2] Güy N., Atacan K., Karaca E., Özacar M., "Role of Ag3PO4 and Fe3O4 on the photocatalytic performance of magnetic Ag3PO4/ZnO/Fe3O4 nanocomposite under visible light irradiation", Solar Energy, 166 (2018) 308-316. [DOI:10.1016/j.solener.2018.03.045]
  4. [2] Güy N., Atacan K., Karaca E., Özacar M., "Role of Ag3PO4 and Fe3O4 on the photocatalytic performance of magnetic Ag3PO4/ZnO/Fe3O4 nanocomposite under visible light irradiation", Solar Energy, 166 (2018) 308-316. [DOI:10.1016/j.solener.2018.03.045]
  5. [3] Gupta V. K., Ali I., Saleh T. A., Nayak A., Agarwal S., "Chemical treatment technologies for waste-water recycling-an overview", Rsc Advances, 2 (2012) 6380-6388. [DOI:10.1039/c2ra20340e]
  6. [3] Gupta V. K., Ali I., Saleh T. A., Nayak A., Agarwal S., "Chemical treatment technologies for waste-water recycling-an overview", Rsc Advances, 2 (2012) 6380-6388. [DOI:10.1039/c2ra20340e]
  7. [4] Zeghioud H., Assadi A. A., Khellaf N., Djelal H., Amrane A., Rtimi S., "Photocatalytic performance of CuxO/TiO2 deposited by HiPIMS on polyester under visible light LEDs: Oxidants, ions effect, and reactive oxygen species investigation", Materials, 12 (2019) 412. [DOI:10.3390/ma12030412]
  8. [4] Zeghioud H., Assadi A. A., Khellaf N., Djelal H., Amrane A., Rtimi S., "Photocatalytic performance of CuxO/TiO2 deposited by HiPIMS on polyester under visible light LEDs: Oxidants, ions effect, and reactive oxygen species investigation", Materials, 12 (2019) 412. [DOI:10.3390/ma12030412]
  9. [5] Nguyen-Tri P., Ghassemi P., Carriere, P., Nanda S., Assadi A. A., Nguyen D. D., "Recent applications of advanced atomic force microscopy in polymer science: A review", Polymers, 12 (2020) 1142. [DOI:10.3390/polym12051142]
  10. [5] Nguyen-Tri P., Ghassemi P., Carriere, P., Nanda S., Assadi A. A., Nguyen D. D., "Recent applications of advanced atomic force microscopy in polymer science: A review", Polymers, 12 (2020) 1142. [DOI:10.3390/polym12051142]
  11. [6] Assadi A. A., Bouzaza A., Wolbert D., "Study of synergetic effect by surface discharge plasma/TiO2 combination for indoor air treatment: Sequential and continuous configurations at pilot scale", Journal of Photochemistry and Photobiology A: Chemistry, 310 (2015) 148-154. [DOI:10.1016/j.jphotochem.2015.05.007]
  12. [6] Assadi A. A., Bouzaza A., Wolbert D., "Study of synergetic effect by surface discharge plasma/TiO2 combination for indoor air treatment: Sequential and continuous configurations at pilot scale", Journal of Photochemistry and Photobiology A: Chemistry, 310 (2015) 148-154. [DOI:10.1016/j.jphotochem.2015.05.007]
  13. [7] Azzaz A. A., Jellali S., Akrout H., Assadi A. A., Bousselmi L., "Dynamic investigations on cationic dye desorption from chemically modified lignocellulosic material using a low-cost eluent: Dye recovery and anodic oxidation efficiencies of the desorbed solutions", Journal of cleaner production, 201 (2018) 28-38. [DOI:10.1016/j.jclepro.2018.08.023]
  14. [7] Azzaz A. A., Jellali S., Akrout H., Assadi A. A., Bousselmi L., "Dynamic investigations on cationic dye desorption from chemically modified lignocellulosic material using a low-cost eluent: Dye recovery and anodic oxidation efficiencies of the desorbed solutions", Journal of cleaner production, 201 (2018) 28-38. [DOI:10.1016/j.jclepro.2018.08.023]
  15. [8] Kumar S. G., Devi L. G., "Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics", The Journal of physical chemistry A, 115 (2011) 13211-13241. [DOI:10.1021/jp204364a]
  16. [8] Kumar S. G., Devi L. G., "Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics", The Journal of physical chemistry A, 115 (2011) 13211-13241. [DOI:10.1021/jp204364a]
  17. [9] Kane A., Assadi A. A., El Jery A., Badawi A. K., Kenfoud H., Baaloudj O., Assadi A. A., "Advanced photocatalytic treatment of wastewater using immobilized titanium dioxide as a photocatalyst in a pilot-scale reactor: process intensification", Materials, 15 (2022) 4547. [DOI:10.3390/ma15134547]
  18. [9] Kane A., Assadi A. A., El Jery A., Badawi A. K., Kenfoud H., Baaloudj O., Assadi A. A., "Advanced photocatalytic treatment of wastewater using immobilized titanium dioxide as a photocatalyst in a pilot-scale reactor: process intensification", Materials, 15 (2022) 4547. [DOI:10.3390/ma15134547]
  19. [10] Akpan U. G., Hameed B. H., "Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review", Journal of hazardous materials, 170 (2009) 520-529. [DOI:10.1016/j.jhazmat.2009.05.039]
  20. [10] Akpan U. G., Hameed B. H., "Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review", Journal of hazardous materials, 170 (2009) 520-529. [DOI:10.1016/j.jhazmat.2009.05.039]
  21. [11] Wang J., Li B., Chen J., Li, N., Zheng J., Zhao J., Zhu Z., "Diethylenetriamine-assisted synthesis of CdS nanorods under reflux condition and their photocatalytic performance", Journal of alloys and compounds, 535 (2012) 15-20. [DOI:10.1016/j.jallcom.2012.04.082]
  22. [11] Wang J., Li B., Chen J., Li, N., Zheng J., Zhao J., Zhu Z., "Diethylenetriamine-assisted synthesis of CdS nanorods under reflux condition and their photocatalytic performance", Journal of alloys and compounds, 535 (2012) 15-20. [DOI:10.1016/j.jallcom.2012.04.082]
  23. [12] Peng S., Li L., Wu Y., Jia L., Tian, L., Srinivasan M., Mhaisalkar S. G., "Size-and shape-controlled synthesis of ZnIn2S4 nanocrystals with high photocatalytic performance", CrystEngComm, 15 (2013) 1922-1930. [DOI:10.1039/c2ce26593a]
  24. [12] Peng S., Li L., Wu Y., Jia L., Tian, L., Srinivasan M., Mhaisalkar S. G., "Size-and shape-controlled synthesis of ZnIn2S4 nanocrystals with high photocatalytic performance", CrystEngComm, 15 (2013) 1922-1930. [DOI:10.1039/c2ce26593a]
  25. [13] Meng X., Tian G., Chen Y., Zhai R., Zhou J., Shi Y., Fu, H., "Hierarchical CuS hollow nanospheres and their structure-enhanced visible light photocatalytic properties", CrystEngComm, 15 (2013) 5144-5149. [DOI:10.1039/c3ce40195b]
  26. [13] Meng X., Tian G., Chen Y., Zhai R., Zhou J., Shi Y., Fu, H., "Hierarchical CuS hollow nanospheres and their structure-enhanced visible light photocatalytic properties", CrystEngComm, 15 (2013) 5144-5149. [DOI:10.1039/c3ce40195b]
  27. [14] Muruganandham M., Amutha R., Repo E., Sillanpää M., Kusumoto Y., Abdulla-Al-Mamun M. D. "Controlled mesoporous self-assembly of ZnS microsphere for photocatalytic degradation of Methyl Orange dye", Journal of Photochemistry and Photobiology A: Chemistry, 216 (2010) 133-141. [DOI:10.1016/j.jphotochem.2010.06.008]
  28. [14] Muruganandham M., Amutha R., Repo E., Sillanpää M., Kusumoto Y., Abdulla-Al-Mamun M. D. "Controlled mesoporous self-assembly of ZnS microsphere for photocatalytic degradation of Methyl Orange dye", Journal of Photochemistry and Photobiology A: Chemistry, 216 (2010) 133-141. [DOI:10.1016/j.jphotochem.2010.06.008]
  29. [15] Madhusudana G., Kumar P. S., Kumar D. P., Srikanth V. V., Shankar M. V., "Photocatalytic performance of rice grain shaped ZnO microrods under solar irradiation", Materials Letters, 128 (2014) 183-186. [DOI:10.1016/j.matlet.2014.04.113]
  30. [15] Madhusudana G., Kumar P. S., Kumar D. P., Srikanth V. V., Shankar M. V., "Photocatalytic performance of rice grain shaped ZnO microrods under solar irradiation", Materials Letters, 128 (2014) 183-186. [DOI:10.1016/j.matlet.2014.04.113]
  31. [16] Kumar D. P., Shankar M. V., Kumari M. M., Sadanandam G., Srinivas B., Durgakumari V., "Nano-size effects on CuO/TiO2 catalysts for highly efficient H2 production under solar light irradiation", Chemical communications, 49 (2013) 9443-9445. [DOI:10.1039/c3cc44742a]
  32. [16] Kumar D. P., Shankar M. V., Kumari M. M., Sadanandam G., Srinivas B., Durgakumari V., "Nano-size effects on CuO/TiO2 catalysts for highly efficient H2 production under solar light irradiation", Chemical communications, 49 (2013) 9443-9445. [DOI:10.1039/c3cc44742a]
  33. [17] Tang H., Zhang D., Tang G., Ji X., Li C., Yan X., Wu Q., "Low temperature synthesis and photocatalytic properties of mesoporous TiO2 nanospheres", Journal of Alloys and Compounds, 591 (2014) 52-57. [DOI:10.1016/j.jallcom.2013.12.176]
  34. [17] Tang H., Zhang D., Tang G., Ji X., Li C., Yan X., Wu Q., "Low temperature synthesis and photocatalytic properties of mesoporous TiO2 nanospheres", Journal of Alloys and Compounds, 591 (2014) 52-57. [DOI:10.1016/j.jallcom.2013.12.176]
  35. [18] Liu Y., Jiao Y., Zhang Z., Qu F., Umar A., Wu X., "Hierarchical SnO2 nanostructures made of intermingled ultrathin nanosheets for environmental remediation, smart gas sensor, and supercapacitor applications", ACS applied materials & interfaces, 6 (2014) 2174-2184. [DOI:10.1021/am405301v]
  36. [18] Liu Y., Jiao Y., Zhang Z., Qu F., Umar A., Wu X., "Hierarchical SnO2 nanostructures made of intermingled ultrathin nanosheets for environmental remediation, smart gas sensor, and supercapacitor applications", ACS applied materials & interfaces, 6 (2014) 2174-2184. [DOI:10.1021/am405301v]
  37. [19] Karunakaran C., Raadha S. S., Gomathisankar P., "Microstructures and optical, electrical and photocatalytic properties of sonochemically and hydrothermally synthesized SnO2 nanoparticles", Journal of alloys and compounds, 549 (2013) 269-275. [DOI:10.1016/j.jallcom.2012.09.035]
  38. [19] Karunakaran C., Raadha S. S., Gomathisankar P., "Microstructures and optical, electrical and photocatalytic properties of sonochemically and hydrothermally synthesized SnO2 nanoparticles", Journal of alloys and compounds, 549 (2013) 269-275. [DOI:10.1016/j.jallcom.2012.09.035]
  39. [20] Li X., Lu X., Meng Y., Yao C., Chen Z., "Facile synthesis and catalytic oxidation property of palygorskite/mesocrystalline Ce1−xMnxO2 nanocomposites", Journal of alloys and compounds, 562 (2013) 56-63. [DOI:10.1016/j.jallcom.2013.02.057]
  40. [20] Li X., Lu X., Meng Y., Yao C., Chen Z., "Facile synthesis and catalytic oxidation property of palygorskite/mesocrystalline Ce1−xMnxO2 nanocomposites", Journal of alloys and compounds, 562 (2013) 56-63. [DOI:10.1016/j.jallcom.2013.02.057]
  41. [21] Shankar M. V., Nélieu S., Kerhoas L., Einhorn J., "Photo-induced degradation of diuron in aqueous solution by nitrites and nitrates: kinetics and pathways", Chemosphere, 66 (2007) 767-774. [DOI:10.1016/j.chemosphere.2006.07.044]
  42. [21] Shankar M. V., Nélieu S., Kerhoas L., Einhorn J., "Photo-induced degradation of diuron in aqueous solution by nitrites and nitrates: kinetics and pathways", Chemosphere, 66 (2007) 767-774. [DOI:10.1016/j.chemosphere.2006.07.044]
  43. [22] Han C., Ge L., Chen C., Li Y., Xiao X., Zhang Y., Guo L., "Novel visible light induced Co3O4-g-C3N4 heterojunction photocatalysts for efficient degradation of methyl orange", Applied Catalysis B: Environmental, 147 (2014) 546-553. [DOI:10.1016/j.apcatb.2013.09.038]
  44. [22] Han C., Ge L., Chen C., Li Y., Xiao X., Zhang Y., Guo L., "Novel visible light induced Co3O4-g-C3N4 heterojunction photocatalysts for efficient degradation of methyl orange", Applied Catalysis B: Environmental, 147 (2014) 546-553. [DOI:10.1016/j.apcatb.2013.09.038]
  45. [23] Shi S., Gondal M. A., Al-Saadi A. A., Fajgar R., Kupcik J., Chang X., ... Seddigi Z. S., "Facile preparation of g-C3N4 modified BiOCl hybrid photocatalyst and vital role of frontier orbital energy levels of model compounds in photoactivity enhancement", Journal of colloid and interface science, 416 (2014) 212-219. [DOI:10.1016/j.jcis.2013.10.052]
  46. [23] Shi S., Gondal M. A., Al-Saadi A. A., Fajgar R., Kupcik J., Chang X., ... Seddigi Z. S., "Facile preparation of g-C3N4 modified BiOCl hybrid photocatalyst and vital role of frontier orbital energy levels of model compounds in photoactivity enhancement", Journal of colloid and interface science, 416 (2014) 212-219. [DOI:10.1016/j.jcis.2013.10.052]
  47. [24] Sadovnikov S. I., Gerasimov E. Y., "Synthesis and Characterization of (Ag2S)x(ZnS) Heteronanostructures", In IOP Conference Series: Materials Science and Engineering (Vol. 1008, No. 1, p. 012019), (2020). [DOI:10.1088/1757-899X/1008/1/012019]
  48. [24] Sadovnikov S. I., Gerasimov E. Y., "Synthesis and Characterization of (Ag2S)x(ZnS) Heteronanostructures", In IOP Conference Series: Materials Science and Engineering (Vol. 1008, No. 1, p. 012019), (2020). [DOI:10.1088/1757-899X/1008/1/012019]
  49. [25] Ruiz Gómez D., "Synthesis and characterization of Ag2S-based nanoparticles as luminescence nanothermomethers", (2019).
  50. [25] Ruiz Gómez D., "Synthesis and characterization of Ag2S-based nanoparticles as luminescence nanothermomethers", (2019).
  51. [26] Fang X., Wu L., Hu, L., "ZnS nanostructure arrays: a developing material star", Advanced Materials, 23 (2011) 585-598. [DOI:10.1002/adma.201003624]
  52. [26] Fang X., Wu L., Hu, L., "ZnS nanostructure arrays: a developing material star", Advanced Materials, 23 (2011) 585-598. [DOI:10.1002/adma.201003624]
  53. [27] Wang, Q., Wang, H., Yang Y., Jin L., Liu Y., Wang Y., Zhang H., "Plasmonic Pt superstructures with boosted near‐infrared absorption and photothermal conversion efficiency in the second biowindow for cancer therapy", Advanced Materials, 31 (2019) 1904836. [DOI:10.1002/adma.201904836]
  54. [27] Wang, Q., Wang, H., Yang Y., Jin L., Liu Y., Wang Y., Zhang H., "Plasmonic Pt superstructures with boosted near‐infrared absorption and photothermal conversion efficiency in the second biowindow for cancer therapy", Advanced Materials, 31 (2019) 1904836. [DOI:10.1002/adma.201904836]
  55. [28] Wei S., Wang Q., Zhu J., Sun L., Lin H., Guo Z., "Multifunctional composite core-shell nanoparticles", Nanoscale, 3 (2011) 4474-4502. [DOI:10.1039/c1nr11000d]
  56. [28] Wei S., Wang Q., Zhu J., Sun L., Lin H., Guo Z., "Multifunctional composite core-shell nanoparticles", Nanoscale, 3 (2011) 4474-4502. [DOI:10.1039/c1nr11000d]
  57. [29] Coey J. M., "Magnetism and magnetic materials", Cambridge university press, (2010).
  58. [29] Coey J. M., "Magnetism and magnetic materials", Cambridge university press, (2010).
  59. [30] Li H., Xie F., Li W., Yang H., Snyders R., Chen M., Li, W., "Preparation and photocatalytic activity of Ag2S/ZnS core-shell composites", Catalysis Surveys from Asia, 22 (2018) 156-165. [DOI:10.1007/s10563-018-9249-2]
  60. [30] Li H., Xie F., Li W., Yang H., Snyders R., Chen M., Li, W., "Preparation and photocatalytic activity of Ag2S/ZnS core-shell composites", Catalysis Surveys from Asia, 22 (2018) 156-165. [DOI:10.1007/s10563-018-9249-2]
  61. [31] Zhang H., Wei B., Zhu L., Yu J., Sun W., Xu L., "Cation exchange synthesis of ZnS-Ag2S microspheric composites with enhanced photocatalytic activity", Applied surface science, 270 (2013) 133-138. [DOI:10.1016/j.apsusc.2012.12.140]
  62. [31] Zhang H., Wei B., Zhu L., Yu J., Sun W., Xu L., "Cation exchange synthesis of ZnS-Ag2S microspheric composites with enhanced photocatalytic activity", Applied surface science, 270 (2013) 133-138. [DOI:10.1016/j.apsusc.2012.12.140]
  63. [32] Franco A., Neves M. C., Carrott M. R., Mendonça M. H., Pereira M. I., Monteiro O. C., "Photocatalytic decolorization of methylene blue in the presence of TiO2/ZnS nanocomposites", Journal of Hazardous Materials, 161 (2009) 545-550. [DOI:10.1016/j.jhazmat.2008.03.133]
  64. [32] Franco A., Neves M. C., Carrott M. R., Mendonça M. H., Pereira M. I., Monteiro O. C., "Photocatalytic decolorization of methylene blue in the presence of TiO2/ZnS nanocomposites", Journal of Hazardous Materials, 161 (2009) 545-550. [DOI:10.1016/j.jhazmat.2008.03.133]
  65. [33] Liu S., Wang Z., Liu H., Xu Q., "Hydrothermal synthesis and optical property of ZnS/CdS composites", Journal of Materials Research, 28 (2013) 2970-2976. [DOI:10.1557/jmr.2013.272]
  66. [33] Liu S., Wang Z., Liu H., Xu Q., "Hydrothermal synthesis and optical property of ZnS/CdS composites", Journal of Materials Research, 28 (2013) 2970-2976. [DOI:10.1557/jmr.2013.272]
  67. [34] Lin D., Wu H., Zhang R., Zhang W., Pan W., "Facile synthesis of heterostructured ZnO-ZnS nanocables and enhanced photocatalytic activity", Journal of the American Ceramic Society, 93 (2010) 3384-3389. [DOI:10.1111/j.1551-2916.2010.03855.x]
  68. [34] Lin D., Wu H., Zhang R., Zhang W., Pan W., "Facile synthesis of heterostructured ZnO-ZnS nanocables and enhanced photocatalytic activity", Journal of the American Ceramic Society, 93 (2010) 3384-3389. [DOI:10.1111/j.1551-2916.2010.03855.x]
  69. [35] Yu J., Zhang J., Liu S., "Ion-exchange synthesis and enhanced visible-light photoactivity of CuS/ZnS nanocomposite hollow spheres", The Journal of Physical Chemistry,114 (2010) 13642-13649. [DOI:10.1021/jp101816c]
  70. [35] Yu J., Zhang J., Liu S., "Ion-exchange synthesis and enhanced visible-light photoactivity of CuS/ZnS nanocomposite hollow spheres", The Journal of Physical Chemistry,114 (2010) 13642-13649. [DOI:10.1021/jp101816c]
  71. [36] Senapati K. K., Borgohain C., Phukan P., "CoFe2O4-ZnS nanocomposite: a magnetically recyclable photocatalyst", Catalysis Science Technology, 2 (2012) 2361-2366. [DOI:10.1039/c2cy20400b]
  72. [36] Senapati K. K., Borgohain C., Phukan P., "CoFe2O4-ZnS nanocomposite: a magnetically recyclable photocatalyst", Catalysis Science Technology, 2 (2012) 2361-2366. [DOI:10.1039/c2cy20400b]
  73. [37] Ghosh Chaudhuri R., Paria S., "Optical properties of double-shell hollow ZnS-Ag2S nanoparticles", The Journal of Physical Chemistry C, 117 (2013) 23385-23390. [DOI:10.1021/jp408105m]
  74. [37] Ghosh Chaudhuri R., Paria S., "Optical properties of double-shell hollow ZnS-Ag2S nanoparticles", The Journal of Physical Chemistry C, 117 (2013) 23385-23390. [DOI:10.1021/jp408105m]
  75. [38] Shen S., Zhang Y., Peng L., Du Y., Wang Q., "Matchstick‐Shaped Ag2S-ZnS Heteronanostructures Preserving both UV/Blue and Near‐Infrared Photoluminescence", Angewandte Chemie, 123 (2011) 7253-7256. [DOI:10.1002/ange.201101084]
  76. [38] Shen S., Zhang Y., Peng L., Du Y., Wang Q., "Matchstick‐Shaped Ag2S-ZnS Heteronanostructures Preserving both UV/Blue and Near‐Infrared Photoluminescence", Angewandte Chemie, 123 (2011) 7253-7256. [DOI:10.1002/ange.201101084]
  77. [39] Wang Y., Gao P., Wei Y., Jin Y., Sun S., Wang Z., Jiang Y., "Silver nanoparticles decorated magnetic polymer composites (Fe3O4@ PS@ Ag) as highly efficient reusable catalyst for the degradation of 4-nitrophenol and organic dyes", Journal of Environmental Management, 278 (2021) 111473. [DOI:10.1016/j.jenvman.2020.111473]
  78. [39] Wang Y., Gao P., Wei Y., Jin Y., Sun S., Wang Z., Jiang Y., "Silver nanoparticles decorated magnetic polymer composites (Fe3O4@ PS@ Ag) as highly efficient reusable catalyst for the degradation of 4-nitrophenol and organic dyes", Journal of Environmental Management, 278 (2021) 111473. [DOI:10.1016/j.jenvman.2020.111473]
  79. [40] Guo M., Xing Z., Zhao T., Qiu Y., Tao B., Li Z., Zhou W., "Hollow flower-like polyhedral α-Fe2O3/Defective MoS2/Ag Z-scheme heterojunctions with enhanced photocatalytic - Fenton performance via surface plasmon resonance and photothermal effects", Applied Catalysis B: Environmental, 272 (2020) 118978. [DOI:10.1016/j.apcatb.2020.118978]
  80. [40] Guo M., Xing Z., Zhao T., Qiu Y., Tao B., Li Z., Zhou W., "Hollow flower-like polyhedral α-Fe2O3/Defective MoS2/Ag Z-scheme heterojunctions with enhanced photocatalytic - Fenton performance via surface plasmon resonance and photothermal effects", Applied Catalysis B: Environmental, 272 (2020) 118978. [DOI:10.1016/j.apcatb.2020.118978]
  81. [41] Khorasanipour N., Iranmanesh P., Saeednia S., Yazdi S. T., "Photocatalytic degradation of Naphthol Green in aqueous solution through the reusable ZnS/MoS2/Fe3O4 magnetic nanocomposite", Surfaces and Interfaces, 36 (2023) 102613. [DOI:10.1016/j.surfin.2022.102613]
  82. [41] Khorasanipour N., Iranmanesh P., Saeednia S., Yazdi S. T., "Photocatalytic degradation of Naphthol Green in aqueous solution through the reusable ZnS/MoS2/Fe3O4 magnetic nanocomposite", Surfaces and Interfaces, 36 (2023) 102613. [DOI:10.1016/j.surfin.2022.102613]
  83. [42] Guinebretière R., "X-ray diffraction by polycrystalline materials", John Wiley & Sons (2013).
  84. [42] Guinebretière R., "X-ray diffraction by polycrystalline materials", John Wiley & Sons (2013).
  85. [43] Riazian M., Yousefpoor M. "Photo-degradation of Methylene Orange by zinc-sulfide nanoparticles synthesized via hydrothermal method", Iranian Journal of Health and Environment, 14 (2021) 1-18.
  86. [43] Riazian M., Yousefpoor M. "Photo-degradation of Methylene Orange by zinc-sulfide nanoparticles synthesized via hydrothermal method", Iranian Journal of Health and Environment, 14 (2021) 1-18.
  87. [44] Yao Y., Gao B., Wu F., Zhang C., Yang L., "Engineered biochar from biofuel residue: characterization and its silver removal potential", ACS Appl. Mater. Interfaces 7 2015 10634-10640. [DOI:10.1021/acsami.5b03131]
  88. [44] Yao Y., Gao B., Wu F., Zhang C., Yang L., "Engineered biochar from biofuel residue: characterization and its silver removal potential", ACS Appl. Mater. Interfaces 7 2015 10634-10640. [DOI:10.1021/acsami.5b03131]
  89. [45] Kannan K., Prasad L. G., Agilan S., Muthukumarasamy N., "Investigations on Ag2S/PVA-PEG polymer nanocomposites: An effectual nonlinear optical material", Optik, 170 (2018) 10-16.‏ [DOI:10.1016/j.ijleo.2018.05.078]
  90. [45] Kannan K., Prasad L. G., Agilan S., Muthukumarasamy N., "Investigations on Ag2S/PVA-PEG polymer nanocomposites: An effectual nonlinear optical material", Optik, 170 (2018) 10-16.‏ [DOI:10.1016/j.ijleo.2018.05.078]
  91. [46] Solomon G., Mazzaro R., You S., Natile M.M., Morandi V., Concina I. and Vomiero A., "Ag2S/MoS2 nanocomposites anchored on reduced graphene oxide: Fast interfacial charge transfer for hydrogen evolution reaction", ACS applied materials and interfaces 11 (2019) 22380-22389. [DOI:10.1021/acsami.9b05086]
  92. [46] Solomon G., Mazzaro R., You S., Natile M.M., Morandi V., Concina I. and Vomiero A., "Ag2S/MoS2 nanocomposites anchored on reduced graphene oxide: Fast interfacial charge transfer for hydrogen evolution reaction", ACS applied materials and interfaces 11 (2019) 22380-22389. [DOI:10.1021/acsami.9b05086]
  93. [47] Liu H., Guo W., Li Y., He S., He C., "Photocatalytic degradation of sixteen organic dyes by TiO2/WO3-coated magnetic nanoparticles under simulated visible light and solar light", Journal of Environmental Chemical Engineering, 6 (2018) 59-67. [DOI:10.1016/j.jece.2017.11.063]
  94. [47] Liu H., Guo W., Li Y., He S., He C., "Photocatalytic degradation of sixteen organic dyes by TiO2/WO3-coated magnetic nanoparticles under simulated visible light and solar light", Journal of Environmental Chemical Engineering, 6 (2018) 59-67. [DOI:10.1016/j.jece.2017.11.063]
  95. [48] Zahedifar M., Shirani M., Akbari A., Seyedi N., "Green synthesis of Ag2S nanoparticles on cellulose/Fe3O4 nanocomposite template for catalytic degradation of organic dyes", Cellulose, 26 (2019) 6797-6812. [DOI:10.1007/s10570-019-02550-6]
  96. [48] Zahedifar M., Shirani M., Akbari A., Seyedi N., "Green synthesis of Ag2S nanoparticles on cellulose/Fe3O4 nanocomposite template for catalytic degradation of organic dyes", Cellulose, 26 (2019) 6797-6812. [DOI:10.1007/s10570-019-02550-6]
  97. [49] Kalpana K., Selvaraj V., "ZnS/SnS/Ag2S photocatalyst with enhanced photocatalytic activity under visible light illumination towards wastewater treatment", Research on Chemical Intermediates, 43 (2017) 423-435. [DOI:10.1007/s11164-016-2632-6]
  98. [49] Kalpana K., Selvaraj V., "ZnS/SnS/Ag2S photocatalyst with enhanced photocatalytic activity under visible light illumination towards wastewater treatment", Research on Chemical Intermediates, 43 (2017) 423-435. [DOI:10.1007/s11164-016-2632-6]
  99. [50] Jiang Y., Pétrier C., Waite T. D., "Effect of pH on the ultrasonic degradation of ionic aromatic compounds in aqueous solution", Ultrasonics sonochemistry, 9 (2002) 163-168. [DOI:10.1016/S1350-4177(01)00114-6]
  100. [50] Jiang Y., Pétrier C., Waite T. D., "Effect of pH on the ultrasonic degradation of ionic aromatic compounds in aqueous solution", Ultrasonics sonochemistry, 9 (2002) 163-168. [DOI:10.1016/S1350-4177(01)00114-6]
  101. [51] Liu Y., Zhu K., Su M., Zhu H., Lu J., Wang Y., Zhang Y., "Influence of solution pH on degradation of atrazine during UV and UV/H2O2 oxidation: Kinetics, mechanism, and degradation pathways", RSC advances, 9 (2019) 35847-35861. [DOI:10.1039/C9RA05747A]
  102. [51] Liu Y., Zhu K., Su M., Zhu H., Lu J., Wang Y., Zhang Y., "Influence of solution pH on degradation of atrazine during UV and UV/H2O2 oxidation: Kinetics, mechanism, and degradation pathways", RSC advances, 9 (2019) 35847-35861. [DOI:10.1039/C9RA05747A]