بررسی اثر بازپخت و ضخامت لایه جاذب Cs2AgBiI6 تهیه شده به روش تبخیر گرمایی بر عملکرد سلول‌های خورشیدی پروسکایتی بدون سرب

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه پژوهشی فوتونیک، دانشکده فیزیک، دانشگاه یزد، یزد، ایران

چکیده

پروسکایت‌های بدون سرب بر پایه بیسموت به‌عنوان یک جایگزین امیدوارکننده برای پروسکایت­های هالید سرب، که سمی بودن و ناپایداری آن‌ها یک چالش بزرگ برای تجاری‌سازی آن‌هاست، در نظر گرفته شده‌اند. با این‌حال، پروسکایت‌های بدون سرب به دلیل گاف انرژی بزرگ و کیفیت نامطلوب لایه نشانی، همچنان دارای مشکل بازده کم هستند. در این پژوهش، پروسکایت دوکاتیونی Cs2AgBiI6 با پایداری به نسبت خوب با یک فرآیند تقطیر ساده با موفقیت سنتز شده و سپس به روش تبخیر گرمایی بر بستر متخلخل TiO2 لایه‌نشانی گردید. اثر بازپخت و همچنین اثر ضخامت لایه پروسکایت تشکیل‌شده، به عنوان لایه جاذب در سلول خورشیدی پروسکایتی، بر ویژگی‌های نوری و الکتریکی آن بررسی شد. گاف انرژی مستقیم Cs2AgBiI6 در اثر بازپخت در دمای  oC250 برابر eV 92/1 شد و گستره جذب گسترده‌ای تا حدود nm 650 نشان داده شد. منحنی‌های مشخصه چگالی جریان-ولتاژ و طیف نورتابی سلول‌های خورشیدی متخلخل ساخته‌شده با لایه جاذب پروسکایتی Cs2AgBiI6 نشان می‌دهند که با دمای بازپخت °C250 و ضخامت nm 400 بازده سلول به مقدار بهینه 9/0%  می‌رسد. این شرایط بهینه آشکارا با مشخصه‌های انتقال بار و پایداری نمونه‌ها نیز همخوانی دارد.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of annealing and thickness on optical and electrical properties of Cs2AgBiI6 layer prepared by thermal evaporation method as an absorber material for lead-free perovskite solar cells

نویسندگان [English]

  • Ali Karimi Zarchi
  • Abbas Behjat
  • Hojjat Amrollahi Bioki
Photonics Research Group, Yazd University, Yazd, Iran
چکیده [English]

Bismuth-based lead-free perovskites are considered as a promising alternative to lead perovskite, whose toxicity and instability are a major challenge in their commercialization. However, lead-free provskites are strongly restricted by low efficiency due to the high band gap and poor quality of layer formation in perovskite solar cells. In this research, the double perovskites Cs2AgBiI6 has been synthesized from solution-based synthesis heating under reflux and then the film was deposited on mp-TiO2 substrate by thermal evaporation method. The effects of annealing and thickness on the optical and electrical properties of deposited layer were investigated for using as absorber layer in perovskite solar cells. The optimal thermal annealing temperatures (250 °C) would significantly extended the wide absorption range up to 650 nm and reduces appreciable direct band gap of 1.92 eV. The results from analysis of the current density–voltage and photoluminescence spectra, show that the best power conversion efficiency of 0.9% obtained at optimal condition of 250 °C annealing temperature and 400 nm thickness of Cs2AgBiI6 film for using in mesostructure lead-free perovskite solar cells. These optimal conditions are clearly consistent with the charge transfer characteristics and stability of the samples.

کلیدواژه‌ها [English]

  • annealing
  • Cs2AgBiI6 double perovskite
  • Lead-free perovskite solar cell
  • Thermal evaporation deposition
  1. [1] Chen M., Shan Z., Dong X., Liu S.F., Xu Z., "Discovering Layered Lead-Free Perovskite Solar Absorbers Via Cation Transmutation", Nanoscale Horizons 8 (2023) 483-488. [DOI:10.1039/D2NH00499B]
  2. [1] Chen M., Shan Z., Dong X., Liu S.F., Xu Z., "Discovering Layered Lead-Free Perovskite Solar Absorbers Via Cation Transmutation", Nanoscale Horizons 8 (2023) 483-488. [DOI:10.1039/D2NH00499B]
  3. [2] Eckhardt K., Bon V., Getzschmann J., Grothe J., Wisser F.M., Kaskel S., "Crystallographic Insights into (CH3NH3)3(Bi2I9): A New Lead-Free Hybrid Organic-Inorganic Material as a Potential Absorber for Photovoltaics", Chemical Communications 52 (2016) 3058-3060. [DOI:10.1039/C5CC10455F]
  4. [2] Eckhardt K., Bon V., Getzschmann J., Grothe J., Wisser F.M., Kaskel S., "Crystallographic Insights into (CH3NH3)3(Bi2I9): A New Lead-Free Hybrid Organic-Inorganic Material as a Potential Absorber for Photovoltaics", Chemical Communications 52 (2016) 3058-3060. [DOI:10.1039/C5CC10455F]
  5. [3] Yin W.J., Yang J.H., Kang J., Yan Y., Wei S.H., "Halide Perovskite Materials for Solar Cells: A Theoretical Review." Journal of Materials Chemistry A 3 (2015) 8926-8942. [DOI:10.1039/C4TA05033A]
  6. [3] Yin W.J., Yang J.H., Kang J., Yan Y., Wei S.H., "Halide Perovskite Materials for Solar Cells: A Theoretical Review." Journal of Materials Chemistry A 3 (2015) 8926-8942. [DOI:10.1039/C4TA05033A]
  7. [4] Zhao Y., Zhu K., "Solution Chemistry Engineering toward High-Efficiency Perovskite Solar Cells", The journal of physical chemistry letters 5 (2014) 4175-4186. [DOI:10.1021/jz501983v]
  8. [4] Zhao Y., Zhu K., "Solution Chemistry Engineering toward High-Efficiency Perovskite Solar Cells", The journal of physical chemistry letters 5 (2014) 4175-4186. [DOI:10.1021/jz501983v]
  9. [5] Liu M., Johnston M.B., Snaith H.J., "Efficient Planar Heterojunction Perovskite Solar Cells by Vapour Deposition", Nature 501 (2013) 395-398. [DOI:10.1038/nature12509]
  10. [5] Liu M., Johnston M.B., Snaith H.J., "Efficient Planar Heterojunction Perovskite Solar Cells by Vapour Deposition", Nature 501 (2013) 395-398. [DOI:10.1038/nature12509]
  11. [6] Muradov A., Frolushkina D., Samusenkov V., Zhamanbayeva G., Kot S., "Methods of Stability Control of Perovskite Solar Cells for High Efficiency", Energies 14 (2021) 2918. [DOI:10.3390/en14102918]
  12. [6] Muradov A., Frolushkina D., Samusenkov V., Zhamanbayeva G., Kot S., "Methods of Stability Control of Perovskite Solar Cells for High Efficiency", Energies 14 (2021) 2918. [DOI:10.3390/en14102918]
  13. [7] Mesquita I., Andrade L., Mendes A., "Perovskite Solar Cells: Materials, Configurations and Stability", Renewable and Sustainable Energy Reviews 82 (2018) 2471-2489. [DOI:10.1016/j.rser.2017.09.011]
  14. [7] Mesquita I., Andrade L., Mendes A., "Perovskite Solar Cells: Materials, Configurations and Stability", Renewable and Sustainable Energy Reviews 82 (2018) 2471-2489. [DOI:10.1016/j.rser.2017.09.011]
  15. [8] Lu C., Zhang J., Sun H., Hou D., Gan X., Shang M.h., Li Y., Hu Z., Zhu Y., Han L., "Inorganic and Lead-Free AgBiI4 Rudorffite for Stable Solar Cell Applications", ACS Applied Energy Materials 1 (2018) 4485-4492. [DOI:10.1021/acsaem.8b01202]
  16. [8] Lu C., Zhang J., Sun H., Hou D., Gan X., Shang M.h., Li Y., Hu Z., Zhu Y., Han L., "Inorganic and Lead-Free AgBiI4 Rudorffite for Stable Solar Cell Applications", ACS Applied Energy Materials 1 (2018) 4485-4492. [DOI:10.1021/acsaem.8b01202]
  17. [9] Oldag T., Aussieker T., Keller H.L., Preitschaft C., Pfitzner A., "Solvothermal Synthesis and Crystal Structure Determination of AgBiI4 and Ag3BiI6." ChemInform 36 (2005) 44227. [DOI:10.1002/chin.200523007]
  18. [9] Oldag T., Aussieker T., Keller H.L., Preitschaft C., Pfitzner A., "Solvothermal Synthesis and Crystal Structure Determination of AgBiI4 and Ag3BiI6." ChemInform 36 (2005) 44227. [DOI:10.1002/chin.200523007]
  19. [10] Igbari F., Wang Z.K., Liao L.S., "Progress of Lead‐Free Halide Double Perovskites", Advanced Energy Materials 9 (2019) 1803150. [DOI:10.1002/aenm.201803150]
  20. [10] Igbari F., Wang Z.K., Liao L.S., "Progress of Lead‐Free Halide Double Perovskites", Advanced Energy Materials 9 (2019) 1803150. [DOI:10.1002/aenm.201803150]
  21. [11] Wei F., Deng Z., Sun S., Zhang F., Evans D.M., Kieslich G., Tominaka S., Carpenter M.A., Zhang J., Bristowe P.D., "Synthesis and Properties of a Lead-Free Hybrid Double Perovskite:(CH3NH3)2AgBiBr6", Chemistry of Materials 329 (2017) 1089-1098. [DOI:10.1021/acs.chemmater.6b03944]
  22. [11] Wei F., Deng Z., Sun S., Zhang F., Evans D.M., Kieslich G., Tominaka S., Carpenter M.A., Zhang J., Bristowe P.D., "Synthesis and Properties of a Lead-Free Hybrid Double Perovskite:(CH3NH3)2AgBiBr6", Chemistry of Materials 329 (2017) 1089-1098. [DOI:10.1021/acs.chemmater.6b03944]
  23. [12] Yin Y., Tian W., Leng J., Bian J., Jin S., "Carrier Transport Limited by Trap State in Cs2AgBiBr6 Double Perovskites", The Journal of Physical Chemistry Letters 11 (2020) 6956-6963. [DOI:10.1021/acs.jpclett.0c01817]
  24. [12] Yin Y., Tian W., Leng J., Bian J., Jin S., "Carrier Transport Limited by Trap State in Cs2AgBiBr6 Double Perovskites", The Journal of Physical Chemistry Letters 11 (2020) 6956-6963. [DOI:10.1021/acs.jpclett.0c01817]
  25. [13] Filip M.R., Hillman S., Haghighirad A.A., Snaith H.J., Giustino F., "Band Gaps of the Lead-Free Halide Double Perovskites Cs2BiAgCl6 and Cs2biagbr6 from Theory and Experiment", The journal of physical chemistry letters 7 (2016) 2579-2585. [DOI:10.1021/acs.jpclett.6b01041]
  26. [13] Filip M.R., Hillman S., Haghighirad A.A., Snaith H.J., Giustino F., "Band Gaps of the Lead-Free Halide Double Perovskites Cs2BiAgCl6 and Cs2biagbr6 from Theory and Experiment", The journal of physical chemistry letters 7 (2016) 2579-2585. [DOI:10.1021/acs.jpclett.6b01041]
  27. [14] Igbari F., Wang R., Wang Z.K., Ma X.J., WangQ., Wang K.L., Zhang Y., Liao L.S., Yang Y., "Composition Stoichiometry of Cs2AgBiBr6 Films for Highly Efficient Lead-Free Perovskite Solar Cells", Nano Letters 19 (2019) 2066-2073. [DOI:10.1021/acs.nanolett.9b00238]
  28. [14] Igbari F., Wang R., Wang Z.K., Ma X.J., WangQ., Wang K.L., Zhang Y., Liao L.S., Yang Y., "Composition Stoichiometry of Cs2AgBiBr6 Films for Highly Efficient Lead-Free Perovskite Solar Cells", Nano Letters 19 (2019) 2066-2073. [DOI:10.1021/acs.nanolett.9b00238]
  29. [15] Creutz S.E., Crites E.N., De Siena M.C., Gamelin D.R., "ColloidalNanocrystals of Lead-Free Double-Perovskite (Elpasolite) Semiconductors: Synthesis and Anion Exchange to Access New Materials", Nano letters 18 (2018) 1118-1123. [DOI:10.1021/acs.nanolett.7b04659]
  30. [15] Creutz S.E., Crites E.N., De Siena M.C., Gamelin D.R., "ColloidalNanocrystals of Lead-Free Double-Perovskite (Elpasolite) Semiconductors: Synthesis and Anion Exchange to Access New Materials", Nano letters 18 (2018) 1118-1123. [DOI:10.1021/acs.nanolett.7b04659]
  31. [16] Li Y., Ji L., Liu R., Zhang C., Mak C.H., Zou X., Shen H.H., Leu S.Y., Hsu H.Y., "A Review on Morphology Engineering for Highly Efficient and Stable Hybrid Perovskite Solar Cells", Journal of Materials Chemistry A 6 (2018) 12842-12875. [DOI:10.1039/C8TA04120B]
  32. [16] Li Y., Ji L., Liu R., Zhang C., Mak C.H., Zou X., Shen H.H., Leu S.Y., Hsu H.Y., "A Review on Morphology Engineering for Highly Efficient and Stable Hybrid Perovskite Solar Cells", Journal of Materials Chemistry A 6 (2018) 12842-12875. [DOI:10.1039/C8TA04120B]
  33. [17] Ghosh B., Wu B., Mulmudi H.K., Guet C., Weber K., Sum T.C., Mhaisalkar S., Mathews N., "Limitations of Cs3Bi2I9 as Lead-Free Photovoltaic Absorber Materials", ACS Applied Materials & Interfaces 10 (2018) 35000-35007. [DOI:10.1021/acsami.7b14735]
  34. [17] Ghosh B., Wu B., Mulmudi H.K., Guet C., Weber K., Sum T.C., Mhaisalkar S., Mathews N., "Limitations of Cs3Bi2I9 as Lead-Free Photovoltaic Absorber Materials", ACS Applied Materials & Interfaces 10 (2018) 35000-35007. [DOI:10.1021/acsami.7b14735]
  35. [18] Tauc J., Grigorovici R., Vancu A., "Optical Properties and Electronic Structure of Amorphous Germanium", physica status solidi (b) 15 (1966) 627-637. [DOI:10.1002/pssb.19660150224]
  36. [18] Tauc J., Grigorovici R., Vancu A., "Optical Properties and Electronic Structure of Amorphous Germanium", physica status solidi (b) 15 (1966) 627-637. [DOI:10.1002/pssb.19660150224]
  37. [19] Asadpour Arzefooni A., Izadifard M., Ghazi M.E., "Investigation of Structural and Optical Properties of CH3NH3SnI3 Perovskite Layers Synthesized by One-Step Thermal Evaporation Technique", Iranian Journal of Crystallography and Mineralogy 28 (2020) 1037-1050. [DOI:10.52547/ijcm.28.4.1037]
  38. [19] Asadpour Arzefooni A., Izadifard M., Ghazi M.E., "Investigation of Structural and Optical Properties of CH3NH3SnI3 Perovskite Layers Synthesized by One-Step Thermal Evaporation Technique", Iranian Journal of Crystallography and Mineralogy 28 (2020) 1037-1050. [DOI:10.52547/ijcm.28.4.1037]
  39. [20] Mitzi D., Yan Y., "High Performance Perovskite-Based Solar Cells (Final Technical Report)", Duke Univ., Durham, NC (United States); Univ. of Toledo, OH (United States), 2019. [DOI:10.2172/1582433]
  40. [20] Mitzi D., Yan Y., "High Performance Perovskite-Based Solar Cells (Final Technical Report)", Duke Univ., Durham, NC (United States); Univ. of Toledo, OH (United States), 2019. [DOI:10.2172/1582433]
  41. [21] Hamdeh U H., "Solution-Processed All-Inorganic Bismuth-Triiodide Thin-Films for Photovoltaic Application", Iowa State University, 2017.
  42. [21] Hamdeh U H., "Solution-Processed All-Inorganic Bismuth-Triiodide Thin-Films for Photovoltaic Application", Iowa State University, 2017.
  43. [22] Zhao Y., Cruse K., Abdelsamie M., Ceder G., Sutter-Fella C M., "Synthetic Approaches for Thin-Film Halide Double Perovskites", Matter 4 (2021) 1801-1831. [DOI:10.1016/j.matt.2021.03.009]
  44. [22] Zhao Y., Cruse K., Abdelsamie M., Ceder G., Sutter-Fella C M., "Synthetic Approaches for Thin-Film Halide Double Perovskites", Matter 4 (2021) 1801-1831. [DOI:10.1016/j.matt.2021.03.009]
  45. [23] Sun H., Zhang J., Gan X., Yu L., Yuan H., Shang M., Lu C., Hou D., Hu Z., Zhu Y., "Pb‐Reduced CsPb0.9Zn0.1I2Br Thin Films for Efficient Perovskite Solar Cells", Advanced energy materials 9 (2019) 1900896. [DOI:10.1002/aenm.201900896]
  46. [23] Sun H., Zhang J., Gan X., Yu L., Yuan H., Shang M., Lu C., Hou D., Hu Z., Zhu Y., "Pb‐Reduced CsPb0.9Zn0.1I2Br Thin Films for Efficient Perovskite Solar Cells", Advanced energy materials 9 (2019) 1900896. [DOI:10.1002/aenm.201900896]
  47. [24] Amrollahi Bioki H., Moshaii A., Borhani Zarandi M., "Performance Improvement of Ambient-Condition Fabricated Perovskite Solar Cells Using an Interfacial HKUST-1 MOF on Electron Transfer Layer", Surfaces and Interfaces 27 (2021) 101579. [DOI:10.1016/j.surfin.2021.101579]
  48. [24] Amrollahi Bioki H., Moshaii A., Borhani Zarandi M., "Performance Improvement of Ambient-Condition Fabricated Perovskite Solar Cells Using an Interfacial HKUST-1 MOF on Electron Transfer Layer", Surfaces and Interfaces 27 (2021) 101579. [DOI:10.1016/j.surfin.2021.101579]
  49. [25] Li Z., Huang Y.T., Mohan L., Zelewski S.J., Friend R.H., Briscoe J., Hoye R.L., "Elucidating the Factors Limiting the Photovoltaic Performance of Mixed Sb-Bi Halide Elpasolite Absorbers", Solar RRL 6 (2022) 2200749. [DOI:10.1002/solr.202200749]
  50. [25] Li Z., Huang Y.T., Mohan L., Zelewski S.J., Friend R.H., Briscoe J., Hoye R.L., "Elucidating the Factors Limiting the Photovoltaic Performance of Mixed Sb-Bi Halide Elpasolite Absorbers", Solar RRL 6 (2022) 2200749. [DOI:10.1002/solr.202200749]
  51. [26] Grabowski D., Liu Z., Schöpe G., Rau U., Kirchartz T., "Fill Factor Losses and Deviations from the Superposition Principle in Lead Halide Perovskite Solar Cells", Solar RRL 6 (2022) 2200507. [DOI:10.1002/solr.202200507]
  52. [26] Grabowski D., Liu Z., Schöpe G., Rau U., Kirchartz T., "Fill Factor Losses and Deviations from the Superposition Principle in Lead Halide Perovskite Solar Cells", Solar RRL 6 (2022) 2200507. [DOI:10.1002/solr.202200507]
  53. [27] Ji F., Boschloo G., Wang F., Gao F., "Challenges and Progress in Lead‐Free Halide Double Perovskite Solar Cells", Solar RRL (2023) 2201112. [DOI:10.1002/solr.202201112]
  54. [27] Ji F., Boschloo G., Wang F., Gao F., "Challenges and Progress in Lead‐Free Halide Double Perovskite Solar Cells", Solar RRL (2023) 2201112. [DOI:10.1002/solr.202201112]
  55. [28] Ke W., Xiao C., Wang C., Saparov B., Duan H.S., Zhao D., Xiao Z., Schulz P., Harvey S.P., Liao W., "Employing Lead Thiocyanate Additive to Reduce the Hysteresis and Boost the Fill Factor of Planar Perovskite Solar Cells", Advanced materials 28 (2016) 5214-5221. [DOI:10.1002/adma.201600594]
  56. [28] Ke W., Xiao C., Wang C., Saparov B., Duan H.S., Zhao D., Xiao Z., Schulz P., Harvey S.P., Liao W., "Employing Lead Thiocyanate Additive to Reduce the Hysteresis and Boost the Fill Factor of Planar Perovskite Solar Cells", Advanced materials 28 (2016) 5214-5221. [DOI:10.1002/adma.201600594]