ساخت و مشخصه‌یابی ویژگی‌های فیزیکی و الکتروشیمی لایه‌‌های نازک کامپوزیت‌های نانوساختاری ZnS/ZnO و ZnO/ZnS/ZnO

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه فیزیک، دانشکده علوم پایه، دانشگاه گیلان، رشت، ایران

چکیده

در این پژوهش سعی شده است که ویژگی‌های فیزیکی و ساختاری لایه‌های نازک ZnO، ZnS/ZnO ، ZnO/ZnS/ZnO با جزئیات بررسی شود. لایه‌های نازک ZnO،ZnS/ZnO  و ZnO/ZnS/ZnO بر روی زیرلایه‌های (بستر) شیشه و FTO (Sno2:F) در دمای ۳۰۰ تا ۵۵۰ درجه سانتی‌گراد با روش اسپری پایرولیز تهیه شدند. کلرید روی و تیوره برای ZnS و استات روی برای ZnO به عنوان پیش ماده برای تهیه محلول اولیه استفاده شدند. نسبت مولاریته محلول بهینه Zn:S ، 2:1 بود. مناسبترین حجم محلول اکسید روی خالص 50 میلی لیتر و بهترین حجم محلول سولفید روی خالص 25 میلی لیتر بوده است. نرخ شارش بهینه برای ایجاد فیلم‌های اکسید روی خالص 4/1 میلی لیتر بر دقیقه و نرخ جریان بهینه برای ایجاد فیلم‌های نازک سولفید روی خالص نیز 2/1 میلی لیتر بر دقیقه بوده است. مناسبترین دما برای ایجاد فیلم‌های نازک نانوساختاری اکسید روی خالص در محیط هوا 500 درجه سانتی‌گراد و مناسبترین دما برای ایجاد فیلم‌های نازک نانوساختاری ZnS خالص در محیط هوا 450 درجه سانتی­گراد می‌باشد. خواص فیزیکی، الکتروشیمیایی و ساختاری لایه‌های نازک ZnO،ZnS/ZnO ، ZnO/ZnS/ZnO تهیه‌شده به روش اسپری پایرولیز با آنالیزهای مختلف مورد بررسی قرار گرفت. خواص ZnO،  ZnS/ZnOو ZnO/ZnS/ZnO با آنالیزهای XRD، FESEM، EDS، NIR، CV، GCD و EIS مشخصه‌یابی شده است. نتایج آن‌ها نشان می‌دهد که فیلم‌ها، ساختاری در مقیاس نانو دارند. نتیجه پراش پرتو ایکس، حضور فاز مکعبی و فاز شش گوشی مربوط به ZnS را با سمت­گیری ترجیحی در راستای مکعبی [111] و هگزاگونال [002] نشان می‌دهد. میکروسکوپ الکترونی روبشی، سطح لایه‌های نازک نانوساختاری را همگن و فشرده نشان داده است. ویژگی‌های الکتروشیمیایی لایه‌های نازک نانوساختار با تجزیه و تحلیل ولتامتری چرخه‌ای، تخلیه بارگالوانوستاتیک و طیف‌سنجی امپدانس الکتروشیمیایی تعیین و بررسی شده است. نتیجه بیانگر این است که لایه نازک نانوساختاری ZnS/ZnO بالاترین ظرفیت را در مقایسه با سایر لایه‌های نازک آماده شده داراست.

کلیدواژه‌ها


عنوان مقاله [English]

Fabrication and characterization of physical and electrochemical properties of ZnO/ZnS and ZnO/ZnS/ZnO nanostructured composite thin films

نویسندگان [English]

  • Seyed Mohammad Rozati
  • Seyed Amir Seyed Hashemi
Department of Physics, Faculty of Sciences, University of Guilan, Rasht, Iran
چکیده [English]

This research investigates and amends the physical properties of pure ZnO and ZnO/ZnS, ZnO/ZnS/ZnO thin films in detail for the first time. Thin films of ZnO, ZnO/ZnS, and ZnO/ZnS/ZnO were prepared on glass and SnO2: F (FTO) substrates at 300-550℃ by spray pyrolysis technique. The initial solution was prepared using zinc chloride (ZnCl2) and thiourea (SC(NH2)2) for ZnS and Zinc acetate (ZnC₄H₆O₄) for ZnO. The optimum solution molarity ratio of Zn:S was determined to be 2:1. Also, the best volume of pure ZnO solution and pure ZnS solution was 50 mL and 25 mL, respectively. In addition, the optimum flow rate for the deposition of pure ZnO solution and deposition of pure ZnS was 1.4 mL/min and 1.2 mL/min, respectively. The best temperature for deposition of pure ZnO solution and pure ZnS solution in air ambient was 500℃ and 450℃, respectively. The physical, electrochemical, and structural properties of ZnO, ZnO/ZnS, and ZnO/ZnS/ZnO thin films prepared by the spray pyrolysis method were investigated using different analyses. The properties of ZnO, ZnO/ZnS, and ZnO/ZnS/ZnO were characterized by X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive Spectroscopy (EDS), Near-infrared (NIR) Spectroscopy, Cyclic Voltammetry (CV), Galvanostatic Charge-Discharge (GCD) and Electrochemical Impedance Spectroscopy (EIS). The results show that the films have a nano-scale structure. In this respect, the XRD results showed the presence of cubic phase and hexagonal phase corresponding to ZnS with a preferred orientation along the ZnS (111) and (002) cubic and hexagonal direction. FESEM demonstrated a homogeneous and compact surface of the prepared thin films. The electrochemical properties of the nanostructured thin films were determined by CV, GCD and EIS analyses. The nanostructured ZnO/ZnS thin film demonstrates the highest specific capacitance compared to the other prepared thin films.
 

کلیدواژه‌ها [English]

  • ZnS
  • ZnO
  • ZnO/ZnS
  • ZnO/ZnS/ZnO
  • thin films
  • Spray Pyrolysis
  1. [1] Muslih E.U., Kim K. H., "Preparation of zinc oxide(ZnO) thin film as Transparent conductive oxide(TCO) from zinc complex compound on thin film solar cells: A study of O2 effect on annealing process", IOP Conf. Ser.:Mater. Sci. Eng. 214 (2017) 12-16. [DOI:10.1088/1757-899X/214/1/012001]
  2. [1] Muslih E.U., Kim K. H., "Preparation of zinc oxide(ZnO) thin film as Transparent conductive oxide(TCO) from zinc complex compound on thin film solar cells: A study of O2 effect on annealing process", IOP Conf. Ser.:Mater. Sci. Eng. 214 (2017) 12-16. [DOI:10.1088/1757-899X/214/1/012001]
  3. [2] Muchuweni E., Sathiaraj T.S., Nyokotyo H., "Synthesis and charactrization of zinc oxide thin films for optoelectronic applications", Heliyon 3 (2017) 285-288. [DOI:10.1016/j.heliyon.2017.e00285]
  4. [2] Muchuweni E., Sathiaraj T.S., Nyokotyo H., "Synthesis and charactrization of zinc oxide thin films for optoelectronic applications", Heliyon 3 (2017) 285-288. [DOI:10.1016/j.heliyon.2017.e00285]
  5. [3] Yeragaliuly G., Soltabayev B., Kalybekkyzy S., Balenov Z., Mentbayeva A., "Effect of thickness and reaction media on properties of ZnO thin films by SILAR", Scientific Reports 12 (2022) 22-26. [DOI:10.1038/s41598-021-04035-8]
  6. [3] Yeragaliuly G., Soltabayev B., Kalybekkyzy S., Balenov Z., Mentbayeva A., "Effect of thickness and reaction media on properties of ZnO thin films by SILAR", Scientific Reports 12 (2022) 22-26. [DOI:10.1038/s41598-021-04035-8]
  7. [4] Han W., Oh S., Lee C., Kim J., Park J., "ZnO nanocrystal thin films for quantum-dot light-emitting devices", ACS Appl. Nano Mater. 3 (2020) 7535-7542. [DOI:10.1021/acsanm.0c01186]
  8. [4] Han W., Oh S., Lee C., Kim J., Park J., "ZnO nanocrystal thin films for quantum-dot light-emitting devices", ACS Appl. Nano Mater. 3 (2020) 7535-7542. [DOI:10.1021/acsanm.0c01186]
  9. [5] Lehraki N., Aida M.S., Abed S., Attaf N., Attaf A., Poulain M., "ZnO thin films deposition by spray pyrolysis: Influence of precursor solution properties", Current Applied Physics 12 (2012) 1283-1287. [DOI:10.1016/j.cap.2012.03.012]
  10. [5] Lehraki N., Aida M.S., Abed S., Attaf N., Attaf A., Poulain M., "ZnO thin films deposition by spray pyrolysis: Influence of precursor solution properties", Current Applied Physics 12 (2012) 1283-1287. [DOI:10.1016/j.cap.2012.03.012]
  11. [6] Heitmann U., Westraadt J., O'Connell J., Jakob L., Dimroth F., Bartsch J., Janz S., Neethling J., "Spray pyrolysis of ZnO:In:characterization of growth mechanism and interface analysis on p-type GaS and n-type Si semiconductor materials", ACS Appl. Mater. Interfaces 14 (2022) 41149-41155. [DOI:10.1021/acsami.2c07585]
  12. [6] Heitmann U., Westraadt J., O'Connell J., Jakob L., Dimroth F., Bartsch J., Janz S., Neethling J., "Spray pyrolysis of ZnO:In:characterization of growth mechanism and interface analysis on p-type GaS and n-type Si semiconductor materials", ACS Appl. Mater. Interfaces 14 (2022) 41149-41155. [DOI:10.1021/acsami.2c07585]
  13. [7] Krunks K., Bijakina O., Mikli V., Varema T., Mellikov E., "Zinc oxide thin films by spray pyrolysis method", Phys. Scr. 209 (1999) 209-212. [DOI:10.1238/Physica.Topical.079a00209]
  14. [7] Krunks K., Bijakina O., Mikli V., Varema T., Mellikov E., "Zinc oxide thin films by spray pyrolysis method", Phys. Scr. 209 (1999) 209-212. [DOI:10.1238/Physica.Topical.079a00209]
  15. [8] Saha J. K., Bukke R. N., Mude N. N., Jang J., "Signifant improvement of spray pyrolyzed ZnO thin film by precursor optimization for high mobility thin film transistors", Scientific Reports 10 (2020) 166-172. [DOI:10.1038/s41598-019-56823-y]
  16. [8] Saha J. K., Bukke R. N., Mude N. N., Jang J., "Signifant improvement of spray pyrolyzed ZnO thin film by precursor optimization for high mobility thin film transistors", Scientific Reports 10 (2020) 166-172. [DOI:10.1038/s41598-019-56823-y]
  17. [9] Ghaffarian H. R., Saiedi M., Sayyadnejad M. A., Rashidi A. M., "Synthesis of nanoparicles by spray pyrolysis method", Iranian Journal of Chemistry and Chemical Engineering 30 (2011) 1-6.
  18. [9] Ghaffarian H. R., Saiedi M., Sayyadnejad M. A., Rashidi A. M., "Synthesis of nanoparicles by spray pyrolysis method", Iranian Journal of Chemistry and Chemical Engineering 30 (2011) 1-6.
  19. [10] Rozati S. M., Ziabari S. A. M., "A review of various single layer, bilayer and multilayer TCO materials and their applications", Materials Chemistry and Physics 292 (2022) 126789-126794. [DOI:10.1016/j.matchemphys.2022.126789]
  20. [10] Rozati S. M., Ziabari S. A. M., "A review of various single layer, bilayer and multilayer TCO materials and their applications", Materials Chemistry and Physics 292 (2022) 126789-126794. [DOI:10.1016/j.matchemphys.2022.126789]
  21. [11] Nasiri M., Rozati S.M., "Muscovite mica as a flexible substrate for transparent conductive AZO thin films deposited by spray pyrolysis", Materials Science in Semiconductor Processing 81 (2018) 38-43. [DOI:10.1016/j.mssp.2018.03.009]
  22. [11] Nasiri M., Rozati S.M., "Muscovite mica as a flexible substrate for transparent conductive AZO thin films deposited by spray pyrolysis", Materials Science in Semiconductor Processing 81 (2018) 38-43. [DOI:10.1016/j.mssp.2018.03.009]
  23. [12] Lee S. K., Kang S. Y., Jang D. Y., Lee C. H., Kang S. M., Kang B. H., W. G., "Scintillators for detecting alpha particles", Progressing Nuclear Science and Technology 1 (2011) 222-224. [DOI:10.15669/pnst.1.222]
  24. [12] Lee S. K., Kang S. Y., Jang D. Y., Lee C. H., Kang S. M., Kang B. H., W. G., "Scintillators for detecting alpha particles", Progressing Nuclear Science and Technology 1 (2011) 222-224. [DOI:10.15669/pnst.1.222]
  25. [13] Ganesha Krishna V. S., Mahesha M. G., "Absence of Mn emission in MnxZn(1-x)S thin films grown by spray pyrolysis technique", Journal of Luminescence 230 (2021) 117716-117719. [DOI:10.1016/j.jlumin.2020.117716]
  26. [13] Ganesha Krishna V. S., Mahesha M. G., "Absence of Mn emission in MnxZn(1-x)S thin films grown by spray pyrolysis technique", Journal of Luminescence 230 (2021) 117716-117719. [DOI:10.1016/j.jlumin.2020.117716]
  27. [14] Bacaksiz E., Gorur O., Tomakin M., Yanmaz E., Altunbas M., "Ag diffiusion in ZnS thin films prepared by spray pyrolysis", Materials Letters 61 (2007) 13009-13021. [DOI:10.1016/j.matlet.2007.04.038]
  28. [14] Bacaksiz E., Gorur O., Tomakin M., Yanmaz E., Altunbas M., "Ag diffiusion in ZnS thin films prepared by spray pyrolysis", Materials Letters 61 (2007) 13009-13021. [DOI:10.1016/j.matlet.2007.04.038]
  29. [15] Elidrissi B., Addou M., Regragui M., "Structure Composition and optical properties of ZnS thin films prepared by spray pyrolysis", Materials Chemistry and physics 68 (2001) 175-179. [DOI:10.1016/S0254-0584(00)00351-5]
  30. [15] Elidrissi B., Addou M., Regragui M., "Structure Composition and optical properties of ZnS thin films prepared by spray pyrolysis", Materials Chemistry and physics 68 (2001) 175-179. [DOI:10.1016/S0254-0584(00)00351-5]
  31. [16] Saleh A., Dawood M. O., Hadi A., "Co-doped ZnS nanostructure thin Films: Synthesis and Properties", AIP Conference Proceedings 2475 (2023) 2475-2479. [DOI:10.1063/5.0102577]
  32. [16] Saleh A., Dawood M. O., Hadi A., "Co-doped ZnS nanostructure thin Films: Synthesis and Properties", AIP Conference Proceedings 2475 (2023) 2475-2479. [DOI:10.1063/5.0102577]
  33. [17] Vidhya Raj D. J., Justin Raj C., Jerome Das S., "Synthesis and optical properties of cerium doped zinc sulfide nano particles", Supperlattices and Microstructures 85 (2015) 274-281. [DOI:10.1016/j.spmi.2015.04.029]
  34. [17] Vidhya Raj D. J., Justin Raj C., Jerome Das S., "Synthesis and optical properties of cerium doped zinc sulfide nano particles", Supperlattices and Microstructures 85 (2015) 274-281. [DOI:10.1016/j.spmi.2015.04.029]
  35. [18] Ali R. S., Rasheed H. S., Abdolameer N. D., Habubi N. F., "Physical properties of Mg doped ZnS thin films via spray pyrolysis", Chalcogenide Letters 20 (2023) 187-196. [DOI:10.15251/CL.2023.203.187]
  36. [18] Ali R. S., Rasheed H. S., Abdolameer N. D., Habubi N. F., "Physical properties of Mg doped ZnS thin films via spray pyrolysis", Chalcogenide Letters 20 (2023) 187-196. [DOI:10.15251/CL.2023.203.187]
  37. [19] Limei Z., Yuzhi X., Jianfeng L., "Study on ZnS thin films prepared by chemical bath deposition", Journal of Environmental Sciences 21 (2009) 169088-169091. [DOI:10.1016/S1001-0742(09)60042-5]
  38. [19] Limei Z., Yuzhi X., Jianfeng L., "Study on ZnS thin films prepared by chemical bath deposition", Journal of Environmental Sciences 21 (2009) 169088-169091. [DOI:10.1016/S1001-0742(09)60042-5]
  39. [20] Benyahia K., Benhaya A., Aida M. S., "ZnS thin films deposition by thermal evaporation for photovoltaic applications", J. Semicond. 36 (2015) 103001-103004. [DOI:10.1088/1674-4926/36/10/103001]
  40. [20] Benyahia K., Benhaya A., Aida M. S., "ZnS thin films deposition by thermal evaporation for photovoltaic applications", J. Semicond. 36 (2015) 103001-103004. [DOI:10.1088/1674-4926/36/10/103001]
  41. [21] Pathak T. K., Kumar V., Purohit L. P., Swart H. C., Kroon R. E., "Substrate dependent structural, optical and electrical properties of ZnS thin films grown by RF sputtering", Physica E: Low-dimentional Systems and Nanostructures 84 (2016) 87-90. [DOI:10.1016/j.physe.2016.06.020]
  42. [21] Pathak T. K., Kumar V., Purohit L. P., Swart H. C., Kroon R. E., "Substrate dependent structural, optical and electrical properties of ZnS thin films grown by RF sputtering", Physica E: Low-dimentional Systems and Nanostructures 84 (2016) 87-90. [DOI:10.1016/j.physe.2016.06.020]
  43. [22] Unnikrishnan N. V., Singh R. D., Matera M., "Pulsed laser indused photoconductivity in ZnS-II", Journal of physics and chemistry of solids 53 (1992) 797-799. [DOI:10.1016/0022-3697(92)90192-G]
  44. [22] Unnikrishnan N. V., Singh R. D., Matera M., "Pulsed laser indused photoconductivity in ZnS-II", Journal of physics and chemistry of solids 53 (1992) 797-799. [DOI:10.1016/0022-3697(92)90192-G]
  45. [23] Stanic V., Etsell T. H., Piesrre A. C., Mikula R. J., "Sol-Gel processing of ZnS", Materials Letters 31 (1997) 35-38. [DOI:10.1016/S0167-577X(96)00237-6]
  46. [23] Stanic V., Etsell T. H., Piesrre A. C., Mikula R. J., "Sol-Gel processing of ZnS", Materials Letters 31 (1997) 35-38. [DOI:10.1016/S0167-577X(96)00237-6]
  47. [24] Al-Diabat A. M., Ahmed N. M., Hashim M. R., Almessiere M. A., "Growth of ZnS thin films using chemical spray pyrolysis technique", Material Today: Proceedings 17 (2019) 912-920. [DOI:10.1016/j.matpr.2019.06.390]
  48. [24] Al-Diabat A. M., Ahmed N. M., Hashim M. R., Almessiere M. A., "Growth of ZnS thin films using chemical spray pyrolysis technique", Material Today: Proceedings 17 (2019) 912-920. [DOI:10.1016/j.matpr.2019.06.390]
  49. [25] Golshahi S., Rozati S. M., "P-type ZnO thin film deposited by spray pyrolysis technique: The effect of solution concentration", Thin Solid Films 518 (2009) 1149-1152. [DOI:10.1016/j.tsf.2009.04.074]
  50. [25] Golshahi S., Rozati S. M., "P-type ZnO thin film deposited by spray pyrolysis technique: The effect of solution concentration", Thin Solid Films 518 (2009) 1149-1152. [DOI:10.1016/j.tsf.2009.04.074]
  51. [26] Najafi N., Rozati S. M., "Resistivity Reduction of Nanostructured Undoped Zinc Oxide thin Films for Ag/ZnO Bilayers Using APCVD and Sputtering Techniques", Materials research 21 (2018) 933-936. [DOI:10.1590/1980-5373-mr-2017-0933]
  52. [26] Najafi N., Rozati S. M., "Resistivity Reduction of Nanostructured Undoped Zinc Oxide thin Films for Ag/ZnO Bilayers Using APCVD and Sputtering Techniques", Materials research 21 (2018) 933-936. [DOI:10.1590/1980-5373-mr-2017-0933]
  53. [27] Cullity B. D., Stock S. R., "Elements of X-ray Diffraction", Third Edition, Prentice-Hall (2001).
  54. [27] Cullity B. D., Stock S. R., "Elements of X-ray Diffraction", Third Edition, Prentice-Hall (2001).
  55. [28] Williamson G.K. , Hall W.H., "X-ray line broadening from filed aluminium and wolfram", Acta Metall 1 (1953) 22-31. [DOI:10.1016/0001-6160(53)90006-6]
  56. [28] Williamson G.K. , Hall W.H., "X-ray line broadening from filed aluminium and wolfram", Acta Metall 1 (1953) 22-31. [DOI:10.1016/0001-6160(53)90006-6]
  57. [29] Lefdhil C., Polat S., Zengin H., "Synthesis of Zinc Oxide Nanorods from Zinc Borate Precursor and Characterization of Supercapacitor Properties", Nanomaterials. 13 (2023) 24-28. [DOI:10.3390/nano13172423]
  58. [29] Lefdhil C., Polat S., Zengin H., "Synthesis of Zinc Oxide Nanorods from Zinc Borate Precursor and Characterization of Supercapacitor Properties", Nanomaterials. 13 (2023) 24-28. [DOI:10.3390/nano13172423]
  59. [30] BiBi S., Shah M.Z.U., Sajjad M., Shafi H.Z., Amin B., Bajaber M.A., Shah A., "A new ZnO-ZnS-CdS heterostructure on Ni substrate: A binder-free electrode for advanced asymmetric supercapacitors with improved performance, Electrochim". Acta. 430 (2022) 141031-141033. [DOI:10.1016/j.electacta.2022.141031]
  60. [30] BiBi S., Shah M.Z.U., Sajjad M., Shafi H.Z., Amin B., Bajaber M.A., Shah A., "A new ZnO-ZnS-CdS heterostructure on Ni substrate: A binder-free electrode for advanced asymmetric supercapacitors with improved performance, Electrochim". Acta. 430 (2022) 141031-141033. [DOI:10.1016/j.electacta.2022.141031]
  61. [31] Gharbi O., Tran M.T.T., Tribollet B., Turmine M., Vivier V., "Revisiting cyclic voltammetry and electrochemical impedance spectroscopy analysis for capacitance measurements, Electrochim". Acta. 343 (2020) 1573-1574. [DOI:10.1016/j.electacta.2020.136109]
  62. [31] Gharbi O., Tran M.T.T., Tribollet B., Turmine M., Vivier V., "Revisiting cyclic voltammetry and electrochemical impedance spectroscopy analysis for capacitance measurements, Electrochim". Acta. 343 (2020) 1573-1574. [DOI:10.1016/j.electacta.2020.136109]
  63. [32] Zhou H., Han G., Xiao Y., Chang Y., Zhai H.-J., "Facile preparation of polypyrrole/graphene oxide nanocomposites with large areal capacitance using electrochemical codeposition for supercapacitors". J. Power Sources. 263 (2014) 259-262. [DOI:10.1016/j.jpowsour.2014.04.039]
  64. [32] Zhou H., Han G., Xiao Y., Chang Y., Zhai H.-J., "Facile preparation of polypyrrole/graphene oxide nanocomposites with large areal capacitance using electrochemical codeposition for supercapacitors". J. Power Sources. 263 (2014) 259-262. [DOI:10.1016/j.jpowsour.2014.04.039]
  65. [33] Safari M., Mazloom J., Boustani K., Monemdjou A., "Hierarchical Fe2O3 hexagonal nanoplatelets anchored on SnO2 nanofibers for high-performance asymmetric supercapacitor device", Sci. Rep. 12 (2022) 14919-14922. [DOI:10.1038/s41598-022-18840-2]
  66. [33] Safari M., Mazloom J., Boustani K., Monemdjou A., "Hierarchical Fe2O3 hexagonal nanoplatelets anchored on SnO2 nanofibers for high-performance asymmetric supercapacitor device", Sci. Rep. 12 (2022) 14919-14922. [DOI:10.1038/s41598-022-18840-2]
  67. [34] Safari M., Mazloom J., "Outstanding energy storage performance in Co-Fe bimetallic metal-organic framework spindles via decorating with reduced graphene oxide nanosheets", Journal of Energy Storage 58 (2023) 106390. [DOI:10.1016/j.est.2022.106390]
  68. [34] Safari M., Mazloom J., "Outstanding energy storage performance in Co-Fe bimetallic metal-organic framework spindles via decorating with reduced graphene oxide nanosheets", Journal of Energy Storage 58 (2023) 106390. [DOI:10.1016/j.est.2022.106390]