زمین‌شیمی، کانی‌شناسی و شرایط تشکیل کانسنگ غیرسولفیدی چنگرزه (جنوب نطنز): رهیافتی برای ردیابی ذخایر برون‌زاد سرب و روی با سنگ میزبان کربناتی

نوع مقاله : مقاله پژوهشی

نویسنده

گروه زمین‌شناسی، دانشکده علوم، دانشگاه بوعلی سینا، همدان، ایران

چکیده

بررسی شرایط زمین­شیمیایی-فلززایی و کانی­شناسی برای تفسیر شرایط اکسایش برون­زاد، تحرک، جدایش و ته­نشست دوباره فلزها در تشکیل ذخایر سرب و روی غیرسولفیدی اهمیت بسیاری دارد. کانسار سرب-(نقره) چنگرزه که در این پژوهش به عنوان یک الگو بررسی شده در سنگ میزبان دولستون­های برشی تریاس میانی در فاصله 75 کیلومتری شمال­شرقی اصفهان، واقع شده است. کانه­زایی به دو صورت درون­زاد سولفیدی و برون­زاد غیرسولفیدی (اکسیدی، کربناتی و سیلیکاتی)، رخ داده است که فراوانترین کانی‌های بخش برون­زاد اسمیت­زونیت، همی­مورفیت، هیدروزینسیت، انگلزیت و سروزیت هستند. برپایه شواهد بدست آمده، جداسازی فلز بخش برون­زاد در اثر تغییر تدریجی از ناحیه اکسایش اسیدی به شرایط قلیایی در سنگ دیواره کربناتی میزبان رخ داده است. پس از آن، تشکیل منطقه اکسایش در سنگ‌ میزبان کربناتی با ایجاد "زره‌بندی" گالن توسط انگلزیت و چند واکنش بافر کننده pH تسهیل شده است. فعالیت بالای یون‌های SO42- در ارتباط با اسید سولفوریک طی مرحله اکسایش منجربه رسوب انگلزیت نامحلول و کاهش چشمگیر Pb2+ در سیال باقی مانده می­شود. براساس شواهد این پژوهش، محدود بودن آب­های جوی و سفره­های آب زیرزمینی عمیق از کانسنگ غیرسولفیدی در برابر انحلال بعدی محافظت می­کند که درک این شرایط نقش مهمی در ردیابی ذخایر برون­زاد غیرسولفیدی دارد.     

کلیدواژه‌ها


عنوان مقاله [English]

Geochemistry, mineralogy, and development constraints of the Changarzeh non-sulfide ore, southern Natanz: Implications on tracing of carbonate rock-hosted supergene Pb-Zn deposits

نویسنده [English]

  • Ebrahim Tale Fazel
Bu-Ali Sina University
چکیده [English]

Investigation of geochemical-metallogenic conditions and mineralogy of the supergene, oxidation, mobilization, fractionation, and reprecipitation of metals, is fundamental for the understanding of the genesis of non-sulfide Pb-Zn deposits. The Changarzeh Pb-(Ag) deposit is located about 75 km northeast of Esfahan Province, within the southern Malayer-Esfahan metallogenic belt. Middle Triassic breccia-dolostone is the main mineralization host rock, and has two hypogene (sulfide) and supergene (oxide, carbonate, and silicate) ores. Frequent minerals of the supergene ore include smithsonite, hemimorphite, hydrozincite, anglesite, and cerussite. Metal separation is caused by a gradual changes from an acidic oxidation zone to alkaline conditions in the adjacent carbonate wall rock. The formation of an acidic oxidation zone within carbonate host rocks is facilitated by the “armouring” of galena by anglesite and by several pH-buffering reactions. The high activity of sulfuric acid-related SO42- ions during the oxidation stage led to the precipitation of highly insoluble anglesite, which results in low Pb2+ concentration within the fluid. Generally, limited availability of meteoric water and deep-water tables protect the non-sulfide ore from subsequent dissolution, where these conditions played an important role in the understanding on trcaing of non-sulfide supergene deposits.

کلیدواژه‌ها [English]

  • Non-sulfide ore
  • supergene reactions
  • geochemical-metallogenic conditions
  • Malayer-Esfahan metallogenic belt
  1. [1] Reichert J., Borg G., "Numerical simulation and geochemical model of supergene carbonate-hosted non-sulfide zinc deposits". Ore Geology Reviews (2008) 33, 134-151. [DOI:10.1016/j.oregeorev.2007.02.006]
  2. [1] Reichert J., Borg G., "Numerical simulation and geochemical model of supergene carbonate-hosted non-sulfide zinc deposits". Ore Geology Reviews (2008) 33, 134-151. [DOI:10.1016/j.oregeorev.2007.02.006]
  3. [2] Paradis S., Simandl G.J., Keevil H., Raudsepp A., "Carbonate-Hosted Nonsulfide Pb-Zn Deposits of the Quesnel Lake District, British Columbia, Canada". Economic Geology (2016) 111, 179-198. [DOI:10.2113/econgeo.111.1.179]
  4. [2] Paradis S., Simandl G.J., Keevil H., Raudsepp A., "Carbonate-Hosted Nonsulfide Pb-Zn Deposits of the Quesnel Lake District, British Columbia, Canada". Economic Geology (2016) 111, 179-198. [DOI:10.2113/econgeo.111.1.179]
  5. [3] Maanijou M., Tale Fazel E., Hayati S., Mohseni H., Vafaei M., "Geology, fluid inclusions, C-O-S-Pb isotopes and genesis of the Ahangaran Pb-Ag (Zn) deposit, Malayer-Esfahan Metallogenic Province, western Iran". Journal of Asian Earth Sciences (2020) 195, 104339. [DOI:10.1016/j.jseaes.2020.104339]
  6. [3] Maanijou M., Tale Fazel E., Hayati S., Mohseni H., Vafaei M., "Geology, fluid inclusions, C-O-S-Pb isotopes and genesis of the Ahangaran Pb-Ag (Zn) deposit, Malayer-Esfahan Metallogenic Province, western Iran". Journal of Asian Earth Sciences (2020) 195, 104339. [DOI:10.1016/j.jseaes.2020.104339]
  7. [4] Tale Fazel E., "Petrography and chemical composition of dolomites in the Khan Sormeh Pb-Zn deposit (western Isfahan) and relationship with sulfide mineralization". Applied Sedimentology (2021) 11, 65-80.
  8. [4] Tale Fazel E., "Petrography and chemical composition of dolomites in the Khan Sormeh Pb-Zn deposit (western Isfahan) and relationship with sulfide mineralization". Applied Sedimentology (2021) 11, 65-80.
  9. [5] Hitzman M.W., Reynolds N.A., Sangster D.F., Allen C.R., Carman C., "Classification, genesis and exploration guides for non-sulfide zinc deposits". Economic Geology (2003) 98, 685-714. [DOI:10.2113/gsecongeo.98.4.685]
  10. [5] Hitzman M.W., Reynolds N.A., Sangster D.F., Allen C.R., Carman C., "Classification, genesis and exploration guides for non-sulfide zinc deposits". Economic Geology (2003) 98, 685-714. [DOI:10.2113/gsecongeo.98.4.685]
  11. [6] Sormak Mines Co., 2015. "Exploration report of the Changarzeh deposit", pp. 59.
  12. [6] Sormak Mines Co., 2015. "Exploration report of the Changarzeh deposit", pp. 59.
  13. [7] Zahedi M., Rahmati M., "Targh geological map, scale 1:100,000". Geological Survey of Iran (2000).
  14. [7] Zahedi M., Rahmati M., "Targh geological map, scale 1:100,000". Geological Survey of Iran (2000).
  15. [8] Warr L.N., "IMA-CNMNC approved mineral symbols". Mineralogical Magazine (2021) 85, 291-320. [DOI:10.1180/mgm.2021.43]
  16. [8] Warr L.N., "IMA-CNMNC approved mineral symbols". Mineralogical Magazine (2021) 85, 291-320. [DOI:10.1180/mgm.2021.43]
  17. [9] Large D., "The geology of non-sulfide zinc deposits - an overview". Erzmetall (2001) 54, 264-274.
  18. [9] Large D., "The geology of non-sulfide zinc deposits - an overview". Erzmetall (2001) 54, 264-274.
  19. [10] Hitzman M.W., "Zinc oxide and zinc silicate deposits-a new look". Geological Society of America, Program with Abstracts (2001) 33, 1-336.
  20. [10] Hitzman M.W., "Zinc oxide and zinc silicate deposits-a new look". Geological Society of America, Program with Abstracts (2001) 33, 1-336.
  21. [11] Keim M.F., Markl G., "Weathering of galena: Mineralogical processes, hydrogeochemical fluid path modeling, and estimation of the growth rate of pyromorphite". American Mineralogist (2015) 100, 1584-1594. [DOI:10.2138/am-2015-5183]
  22. [11] Keim M.F., Markl G., "Weathering of galena: Mineralogical processes, hydrogeochemical fluid path modeling, and estimation of the growth rate of pyromorphite". American Mineralogist (2015) 100, 1584-1594. [DOI:10.2138/am-2015-5183]
  23. [12] McPhail D.C., Summerhayes E., Welch S., Brugger J., "The Geochemistry of Zinc in the Regolith". In: Roach, I.C. (Ed.), Advances in Regolith. CRC for Landscape Environments and Mineral Exploration, (2003) 287-291.
  24. [12] McPhail D.C., Summerhayes E., Welch S., Brugger J., "The Geochemistry of Zinc in the Regolith". In: Roach, I.C. (Ed.), Advances in Regolith. CRC for Landscape Environments and Mineral Exploration, (2003) 287-291.
  25. [13] Frost R.L., Jagannadha Reddy B., Wain D.L., Martens W.N., "Identification of the rosasite group minerals-An application of near infrared spectroscopy". Spectrochemical Acta Part A. Molecular and Biomolecular Spectroscopy (2007) 66, 1075-1081. [DOI:10.1016/j.saa.2006.04.043]
  26. [13] Frost R.L., Jagannadha Reddy B., Wain D.L., Martens W.N., "Identification of the rosasite group minerals-An application of near infrared spectroscopy". Spectrochemical Acta Part A. Molecular and Biomolecular Spectroscopy (2007) 66, 1075-1081. [DOI:10.1016/j.saa.2006.04.043]
  27. [14] Worthing M., Sutherland H., "The composition and origin of massicot, litharge (PbO) and a mixed oxide of lead used as a traditional medicine in the Arabian Gulf". Mineralogical Magazine (1996) 60, 509-513. [DOI:10.1180/minmag.1996.060.400.12]
  28. [14] Worthing M., Sutherland H., "The composition and origin of massicot, litharge (PbO) and a mixed oxide of lead used as a traditional medicine in the Arabian Gulf". Mineralogical Magazine (1996) 60, 509-513. [DOI:10.1180/minmag.1996.060.400.12]
  29. [15] Choulet F., Charles N., Barbanson L., Branquet Y., Sizaret S., Ennaciri A., Badra L., Chen Y., "Non-sulfide zinc deposits of the Moroccan High Atlas: multiscale characterization and origin". Ore Geology Reviews (2014) 56, 115-140. [DOI:10.1016/j.oregeorev.2013.08.015]
  30. [15] Choulet F., Charles N., Barbanson L., Branquet Y., Sizaret S., Ennaciri A., Badra L., Chen Y., "Non-sulfide zinc deposits of the Moroccan High Atlas: multiscale characterization and origin". Ore Geology Reviews (2014) 56, 115-140. [DOI:10.1016/j.oregeorev.2013.08.015]
  31. [16] Borg G., "A review of supergene non-sulfide zinc (SNSZ) deposits the 2014 update". In: Archibald SM, Piercey SJ (eds) Current Perspectives of Zinc deposits. Irish Association for (2015) Economic Geology, Dublin, 123-147.
  32. [16] Borg G., "A review of supergene non-sulfide zinc (SNSZ) deposits the 2014 update". In: Archibald SM, Piercey SJ (eds) Current Perspectives of Zinc deposits. Irish Association for (2015) Economic Geology, Dublin, 123-147.
  33. [17] Maghfouri S., Hosseinzadeh M.R., Choulet F., "Supergene nonsulfide Zn-Pb mineralization in the Mehdiabad world-class sub-seafloor replacement SEDEX-type deposit, Iran". International Journal of Earth Sciences (2020) 109, 2531-2555. [DOI:10.1007/s00531-020-01916-7]
  34. [17] Maghfouri S., Hosseinzadeh M.R., Choulet F., "Supergene nonsulfide Zn-Pb mineralization in the Mehdiabad world-class sub-seafloor replacement SEDEX-type deposit, Iran". International Journal of Earth Sciences (2020) 109, 2531-2555. [DOI:10.1007/s00531-020-01916-7]
  35. [18] Sangameshwar S.R., Barnes H.L., "Supergene processes in zinc-lead-silver sulfides ores in carbonates". Economic Geology (1983) 78, 1379-1397. [DOI:10.2113/gsecongeo.78.7.1379]
  36. [18] Sangameshwar S.R., Barnes H.L., "Supergene processes in zinc-lead-silver sulfides ores in carbonates". Economic Geology (1983) 78, 1379-1397. [DOI:10.2113/gsecongeo.78.7.1379]
  37. [19] Takahashi T., "Supergene alteration of zinc and lead deposits in limestone". Economic Geology (1960) 55, 1083-1115. [DOI:10.2113/gsecongeo.55.6.1083]
  38. [19] Takahashi T., "Supergene alteration of zinc and lead deposits in limestone". Economic Geology (1960) 55, 1083-1115. [DOI:10.2113/gsecongeo.55.6.1083]
  39. [20] Arfè G., Mondillo N., Boni M., Balassone G., Joachimski M., Mormone A., Di Palma T., "The Karst-Hosted mina grande non-sulfide zinc deposit, Bongara District (Amazonas Region, Peru)". Economic Geology (2017) 112, 1089-1110. [DOI:10.5382/econgeo.2017.4503]
  40. [20] Arfè G., Mondillo N., Boni M., Balassone G., Joachimski M., Mormone A., Di Palma T., "The Karst-Hosted mina grande non-sulfide zinc deposit, Bongara District (Amazonas Region, Peru)". Economic Geology (2017) 112, 1089-1110. [DOI:10.5382/econgeo.2017.4503]
  41. [21] Reichert J., "A geochemical model of supergene carbonate-hosted non-sulfide zinc deposits". In: Titley SR (ed) Supergene Environments, Processes, and Products. Society of Economic Geologists (2009) Special Publication, pp 69-76. [DOI:10.5382/SP.14.07]
  42. [21] Reichert J., "A geochemical model of supergene carbonate-hosted non-sulfide zinc deposits". In: Titley SR (ed) Supergene Environments, Processes, and Products. Society of Economic Geologists (2009) Special Publication, pp 69-76. [DOI:10.5382/SP.14.07]
  43. [22] Boni M., Gilg H.A., Balassone G., Schneider J., Allen C.R., Moore F., "Hypogene Zn carbonate ores in the Angouran deposit, NW Iran". Mineralium Deposita (2007) 42, 799-820. [DOI:10.1007/s00126-007-0144-4]
  44. [22] Boni M., Gilg H.A., Balassone G., Schneider J., Allen C.R., Moore F., "Hypogene Zn carbonate ores in the Angouran deposit, NW Iran". Mineralium Deposita (2007) 42, 799-820. [DOI:10.1007/s00126-007-0144-4]
  45. [23] Sadiq A.M., Nasir S.J., "Middle Pleistocene karst evolution in the State of Qatar, Arabian Gulf". Journal of Cave and Karst Studies (2002) 64, 132-139.
  46. [23] Sadiq A.M., Nasir S.J., "Middle Pleistocene karst evolution in the State of Qatar, Arabian Gulf". Journal of Cave and Karst Studies (2002) 64, 132-139.
  47. [24] Reichert J., Borg G., Rashidi B., "Mineralogy of calamine ore from the Mehdi Abad zinc-lead deposit, Central Iran". In: Eliopoulos DG (ed) Mineral Exploration and Sustainable Development. Millpress, Rotterdam (2003), 97-100.
  48. [24] Reichert J., Borg G., Rashidi B., "Mineralogy of calamine ore from the Mehdi Abad zinc-lead deposit, Central Iran". In: Eliopoulos DG (ed) Mineral Exploration and Sustainable Development. Millpress, Rotterdam (2003), 97-100.