سنتز و بررسی ویژگی‌های خواص ساختاری، نوری و مغناطیسی نانوکامپوزیت‌های ZnO/Fe2O3

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده فیزیک و مهندسی هسته‌ای دانشگاه صنعتی شاهرود، شاهرود، ایران

چکیده

در این پژوهش، نمونه‌های پودری ZnO، α-Fe2O3 و نانوکامپوزیت‌های ZnO/Fe2O3 با نسبت وزنی  ZnO به  Fe2O3  برابر با  (5/0: 1)، (1:1) و (1:2) به روش گرمابی تهیه و سپس ویژگی­های ساختاری­، نوری و مغناطیسی آنها بررسی شد. نتایج بررسی الگوهای پراش پرتو (XRD) نمونه­‌ها تشکیل ساختار ششگوشی اکسید روی و اکسید آهن را تائید کردند. بررسی طیف جذبی نمونه­‌های سنتز شده نشان داد که نانوکامپوزیت ZnO/Fe2O3 جذب را در ناحیه مرئی افزایش داده و از این رو مقدار گاف نواری آن نسبت به اکسید روی کاهش و نسبت به اکسید آهن افزایش می ‌یابد. تصاویر میکروسکوپ الکترونی روبشی گسیل میدانی (FESEM) نشان دادند که نانوذرات کروی Fe2O3 روی سطح نانوورقه­های ZnO قرار گرفته‌اند. نتایج مغناطیس سنج نمونه ارتعاشی (VSM) نشان دادند که ZnO خالص دارای ویژگی­ غالب دیامغناطیسی و -Fe2O3α دارای ویژگی­های فرومغناطیس نرم هستند و در نانوکامپوزیت‌های تهیه شده، با افزایش غلظت Fe2O3 مقدار مغناطش افزایش می‌یابد. به­طور کلی نتایج این تحلیل­ها نشان دادند که اندازه ذرات، ویژگی­های نوری و ویژگی­های مغناطیسی نانوکامپوزیت­های ZnO/Fe2O3 به شدت به غلظت Fe2O3-α بستگی دارند.     

کلیدواژه‌ها


عنوان مقاله [English]

Synthesis and study of structural, optical and magnetic properties of ZnO/Fe2O3 nanocomposites

نویسندگان [English]

  • maaedeh saiedi
  • mohammad e. ghazi
  • morteza izadifard
Physics Department, Shahrood University of Technology, Shahrood, Iran
چکیده [English]

In this study, ZnO, α-Fe2O3 and ZnO/Fe2O3 nanocomposites powders with weight ratios of (1:0/.5), (1: 1) and (1: 2) were prepared using hydrothermal method and their structural, optical and magnetic properties were investigated. The results obtained from analysis of the XRD patterns confirmed formation of the hexagonal structures for ZnO and Fe2O3. The absorption spectra of the synthesized samples showed that the absorption in the visible region increases for ZnO/Fe2O3 nanocomposite and its band gap value reduces (increases) in comparison to the zinc oxide (iron oxide). FESEM images showed that Fe2O3 spherical nanoparticles are located on the surface of the ZnO nano-sheets .The results obtained from magnetic studies by VSM revealed that ZnO has a diamagnetic property and α-Fe2O3 shows soft ferromagnetic behavior and for the nanocomposites, the magnetization values increase with increasing the Fe2O3 concentration. In general, the results show that the particle size, optical property and magnetic property of the ZnO/Fe2O3 nanocomposites strongly depends on the concentration of Fe2O3.

کلیدواژه‌ها [English]

  • hydrothermal method
  • ZnO/Fe2O3 nanocomposites
  • optical property
  • magnetic property
  • structural property
  1. [1] Theerthagiri J., et al., "A review on ZnO nanostructured materials: energy, environmental and biological applications", Nanotechnology, 30(39), p.392001 [DOI:10.1088/1361-6528/ab268a]
  2. [1] Theerthagiri J., et al., "A review on ZnO nanostructured materials: energy, environmental and biological applications", Nanotechnology, 30(39), p.392001 [DOI:10.1088/1361-6528/ab268a]
  3. [2] Zhang J., et al., "α‐Fe2O3 nanospindles loaded with ZnO nanocrystals: Synthesis and improved gas sensing performance Crystal Research and Technology,. 49(7) (2014) pp. 452-459. [DOI:10.1002/crat.201300397]
  4. [2] Zhang J., et al., "α‐Fe2O3 nanospindles loaded with ZnO nanocrystals: Synthesis and improved gas sensing performance Crystal Research and Technology,. 49(7) (2014) pp. 452-459. [DOI:10.1002/crat.201300397]
  5. [3] Rahmah M.I., et al., "Synthesis and study photocatalytic activity of Fe2O3 doped ZnO nanostructure under visible light irradiation", International Journal of Environmental Analytical Chemistry, 101(15) (2015), pp.2598-2611. [DOI:10.1080/03067319.2019.1699549]
  6. [3] Rahmah M.I., et al., "Synthesis and study photocatalytic activity of Fe2O3 doped ZnO nanostructure under visible light irradiation", International Journal of Environmental Analytical Chemistry, 101(15) (2015), pp.2598-2611. [DOI:10.1080/03067319.2019.1699549]
  7. [4] Coleman V.A., et al, "Basic properties and applications of ZnO. In Zinc oxide bulk, thin films and nanostructures", Elsevier Science Ltd (2006) pp.1-20. [DOI:10.1016/B978-008044722-3/50001-4]
  8. [4] Coleman V.A., et al, "Basic properties and applications of ZnO. In Zinc oxide bulk, thin films and nanostructures", Elsevier Science Ltd (2006) pp.1-20. [DOI:10.1016/B978-008044722-3/50001-4]
  9. [5] Shekofteh-Gohari M., et al., "Magnetically separable nanocomposites based on ZnO and their applications in photocatalytic processes: a review", Critical reviews in environmental science and technology, 48(10-12) (2018) pp.806-857. [DOI:10.1080/10643389.2018.1487227]
  10. [5] Shekofteh-Gohari M., et al., "Magnetically separable nanocomposites based on ZnO and their applications in photocatalytic processes: a review", Critical reviews in environmental science and technology, 48(10-12) (2018) pp.806-857. [DOI:10.1080/10643389.2018.1487227]
  11. [6] Sharma D.K., et al. "A review on ZnO: Fundamental properties and applications", Elsevier,49 (8), (2022) pp.3028-3035. [DOI:10.1016/j.matpr.2020.10.238]
  12. [6] Sharma D.K., et al. "A review on ZnO: Fundamental properties and applications", Elsevier,49 (8), (2022) pp.3028-3035. [DOI:10.1016/j.matpr.2020.10.238]
  13. [7] Yu-Kuei Hsu et al., "Novel ZnO/Fe2O3 Core-Shell Nanowires for Photoelectrochemical Water Splitting", ACS Applied Materials & Interfaces 7 (25),pp. (2015) 14157-14162 . [DOI:10.1021/acsami.5b03921]
  14. [7] Yu-Kuei Hsu et al., "Novel ZnO/Fe2O3 Core-Shell Nanowires for Photoelectrochemical Water Splitting", ACS Applied Materials & Interfaces 7 (25),pp. (2015) 14157-14162 . [DOI:10.1021/acsami.5b03921]
  15. [8] Khezami L.,et al., "Dependence of phase distribution and magnetic properties of milled and annealed ZnO/Fe2O3 nanostructures as efficient adsorbents of heavy metals", Journal of Materials Science: Materials in Electronics, 30(10) (2019) pp.9683-9694. [DOI:10.1007/s10854-019-01303-2]
  16. [8] Khezami L.,et al., "Dependence of phase distribution and magnetic properties of milled and annealed ZnO/Fe2O3 nanostructures as efficient adsorbents of heavy metals", Journal of Materials Science: Materials in Electronics, 30(10) (2019) pp.9683-9694. [DOI:10.1007/s10854-019-01303-2]
  17. [9] Zhu W., et al., "Atomic structural evolution during the reduction of α-Fe2O3 nanowires", The Journal of Physical Chemistry C, 120(27), (2016) pp.14854-14862. [DOI:10.1021/acs.jpcc.6b02033]
  18. [9] Zhu W., et al., "Atomic structural evolution during the reduction of α-Fe2O3 nanowires", The Journal of Physical Chemistry C, 120(27), (2016) pp.14854-14862. [DOI:10.1021/acs.jpcc.6b02033]
  19. [10] Seabra A.B., et al., "Antimicrobial applications of superparamagnetic iron oxide nanoparticles: Perspectives and challenges. In Nanostructures for Antimicrobial Therapy", Elsevier, pp. 531-550 (2017). [DOI:10.1016/B978-0-323-46152-8.00024-X]
  20. [10] Seabra A.B., et al., "Antimicrobial applications of superparamagnetic iron oxide nanoparticles: Perspectives and challenges. In Nanostructures for Antimicrobial Therapy", Elsevier, pp. 531-550 (2017). [DOI:10.1016/B978-0-323-46152-8.00024-X]
  21. [11] Dimopoulos T., "All-oxide solar cells", The future of semiconductor oxides in next-generation solar cells (2018) pp.439-480. [DOI:10.1016/B978-0-12-811165-9.00011-9]
  22. [11] Dimopoulos T., "All-oxide solar cells", The future of semiconductor oxides in next-generation solar cells (2018) pp.439-480. [DOI:10.1016/B978-0-12-811165-9.00011-9]
  23. [12] Taghizadeh S.M., et al. "New Perspectives on Iron-Based Nanostructures", Processes, 8(9), (2020) p.1128. [DOI:10.3390/pr8091128]
  24. [12] Taghizadeh S.M., et al. "New Perspectives on Iron-Based Nanostructures", Processes, 8(9), (2020) p.1128. [DOI:10.3390/pr8091128]
  25. [13] Li L., et al., "The influence of the hydrothermal temperature and time on morphology and photoelectrochemical response of α-Fe2O3 photoanode", Journal of Alloys and Compounds, 696, (2017) pp.980-987. [DOI:10.1016/j.jallcom.2016.12.101]
  26. [13] Li L., et al., "The influence of the hydrothermal temperature and time on morphology and photoelectrochemical response of α-Fe2O3 photoanode", Journal of Alloys and Compounds, 696, (2017) pp.980-987. [DOI:10.1016/j.jallcom.2016.12.101]
  27. [14] Shekofteh-Gohari et al. "Magnetically separable nanocomposites based on ZnO and their applications in photocatalytic processes: a review", Critical reviews in environmental science and technology, 48(10-12) (2018) pp.806-857. [DOI:10.1080/10643389.2018.1487227]
  28. [14] Shekofteh-Gohari et al. "Magnetically separable nanocomposites based on ZnO and their applications in photocatalytic processes: a review", Critical reviews in environmental science and technology, 48(10-12) (2018) pp.806-857. [DOI:10.1080/10643389.2018.1487227]
  29. [15] da Trindade L.G., et al. "Preparation and characterization of hematite nanoparticles-decorated zinc oxide particles (ZnO/Fe2O3) as photoelectrodes for solar cell applications", J Mater Sci 55, (2018) pp. 2923-2936. [DOI:10.1007/s10853-019-04135-x]
  30. [15] da Trindade L.G., et al. "Preparation and characterization of hematite nanoparticles-decorated zinc oxide particles (ZnO/Fe2O3) as photoelectrodes for solar cell applications", J Mater Sci 55, (2018) pp. 2923-2936. [DOI:10.1007/s10853-019-04135-x]
  31. [16] Sett A., Dey et al. "ZnO/gamma -Fe2O3 Heterostructure Toward High-Performance Acetone Sensing", IEEE Sensors Journal, 19(19), (2019) pp.8576-8582. [DOI:10.1109/JSEN.2019.2921421]
  32. [16] Sett A., Dey et al. "ZnO/gamma -Fe2O3 Heterostructure Toward High-Performance Acetone Sensing", IEEE Sensors Journal, 19(19), (2019) pp.8576-8582. [DOI:10.1109/JSEN.2019.2921421]
  33. [17] Dhiman P., et al. "Rapid visible and solar photocatalytic Cr (VI) reduction and electrochemical sensing of dopamine using solution combustion synthesized ZnO-Fe2O3 nano heterojunctions: mechanism elucidation", Ceramics International,. 46(8), (2020) pp. 12255-12268. [DOI:10.1016/j.ceramint.2020.01.275]
  34. [17] Dhiman P., et al. "Rapid visible and solar photocatalytic Cr (VI) reduction and electrochemical sensing of dopamine using solution combustion synthesized ZnO-Fe2O3 nano heterojunctions: mechanism elucidation", Ceramics International,. 46(8), (2020) pp. 12255-12268. [DOI:10.1016/j.ceramint.2020.01.275]
  35. [18] Bu X., et al. "Facile synthesis of flower-like ZnO@ Fe2O3 hierarchical nanostructures with enhanced catalytic activity on the thermal decomposition of ammonium perchlorate", Materials Letters, 219 (2018) pp.33-36. [DOI:10.1016/j.matlet.2018.02.066]
  36. [18] Bu X., et al. "Facile synthesis of flower-like ZnO@ Fe2O3 hierarchical nanostructures with enhanced catalytic activity on the thermal decomposition of ammonium perchlorate", Materials Letters, 219 (2018) pp.33-36. [DOI:10.1016/j.matlet.2018.02.066]
  37. [20] Rahmah M.I., et al. "Synthesis and study photocatalytic activity of Fe2O3-doped ZnO nanostructure under visible light irradiation", International Journal of Environmental Analytical Chemistry, 101(15), (2021) pp.2598-2611. [DOI:10.1080/03067319.2019.1699549]
  38. [20] Rahmah M.I., et al. "Synthesis and study photocatalytic activity of Fe2O3-doped ZnO nanostructure under visible light irradiation", International Journal of Environmental Analytical Chemistry, 101(15), (2021) pp.2598-2611. [DOI:10.1080/03067319.2019.1699549]
  39. [21] Achouri F., et al. "Aqueous synthesis and enhanced photocatalytic activity of ZnO/Fe2O3 heterostructures", Journal of Physics and Chemistry of Solids, 75(10) (2014) pp.1081-1087. [DOI:10.1016/j.jpcs.2014.05.013]
  40. [21] Achouri F., et al. "Aqueous synthesis and enhanced photocatalytic activity of ZnO/Fe2O3 heterostructures", Journal of Physics and Chemistry of Solids, 75(10) (2014) pp.1081-1087. [DOI:10.1016/j.jpcs.2014.05.013]
  41. [22] Ordon K., "Functionalized semiconducting oxides based on bismuth vanadate with anchored organic dye molecules for photoactive applications (Doctoral dissertation, Le Mans) (2018).
  42. [22] Ordon K., "Functionalized semiconducting oxides based on bismuth vanadate with anchored organic dye molecules for photoactive applications (Doctoral dissertation, Le Mans) (2018).
  43. [23] Zaman F.U., et al. "MOFs Derived Hetero-ZnO/Fe2O3 Nanoflowers with Enhanced Photocatalytic Performance towards Efficient Degradation of Organic Dyes", Nanomaterials (Basel, Switzerland), 11(12) (2021). [DOI:10.3390/nano11123239]
  44. [23] Zaman F.U., et al. "MOFs Derived Hetero-ZnO/Fe2O3 Nanoflowers with Enhanced Photocatalytic Performance towards Efficient Degradation of Organic Dyes", Nanomaterials (Basel, Switzerland), 11(12) (2021). [DOI:10.3390/nano11123239]
  45. [24] Yang Y., et al. "The study on degradation and separation of RhB under UV light by magnetically ZnO/Fe2O3 nanoparticles. physica status solidi (a), 215(23) (2018) pp.1800416. [DOI:10.1002/pssa.201800416]
  46. [24] Yang Y., et al. "The study on degradation and separation of RhB under UV light by magnetically ZnO/Fe2O3 nanoparticles. physica status solidi (a), 215(23) (2018) pp.1800416. [DOI:10.1002/pssa.201800416]
  47. [25] Khezami L., et al. "Dependence of phase distribution and magnetic properties of milled and annealed ZnO/Fe 2O3 nanostructures as efficient adsorbents of heavy metals", Journal of Materials Science: Materials in Electronics, 30(10) (2019) pp.9683-9694. [DOI:10.1007/s10854-019-01303-2]
  48. [25] Khezami L., et al. "Dependence of phase distribution and magnetic properties of milled and annealed ZnO/Fe 2O3 nanostructures as efficient adsorbents of heavy metals", Journal of Materials Science: Materials in Electronics, 30(10) (2019) pp.9683-9694. [DOI:10.1007/s10854-019-01303-2]
  49. [26] Van Duy et al., "Facile Hydrothermal Synthesis of Two-Dimensional Porous ZnO Nanosheets for Highly Sensitive Ethanol Sensor". Journal of Nanomaterials (2019). [DOI:10.1155/2019/4867909]
  50. [26] Van Duy et al., "Facile Hydrothermal Synthesis of Two-Dimensional Porous ZnO Nanosheets for Highly Sensitive Ethanol Sensor". Journal of Nanomaterials (2019). [DOI:10.1155/2019/4867909]
  51. [27] Noruozi A. et al. "Preparation, characterization, and investigation of the catalytic property of α-Fe2O3-ZnO nanoparticles in the photodegradation and mineralization of methylene blue", Chemical Physics Letters, 752 (2020) pp.137587. [DOI:10.1016/j.cplett.2020.137587]
  52. [27] Noruozi A. et al. "Preparation, characterization, and investigation of the catalytic property of α-Fe2O3-ZnO nanoparticles in the photodegradation and mineralization of methylene blue", Chemical Physics Letters, 752 (2020) pp.137587. [DOI:10.1016/j.cplett.2020.137587]
  53. [28] Mirzaie R.A., et al "Effect of α-Fe2O3 addition on the morphological, optical and decolorization properties of ZnO nanostructures", Materials Chemistry and Physics, 133(1) (2012) pp.311-316. [DOI:10.1016/j.matchemphys.2012.01.029]
  54. [28] Mirzaie R.A., et al "Effect of α-Fe2O3 addition on the morphological, optical and decolorization properties of ZnO nanostructures", Materials Chemistry and Physics, 133(1) (2012) pp.311-316. [DOI:10.1016/j.matchemphys.2012.01.029]
  55. [29] Yadav R.S., et al., "Structural, magnetic, optical, dielectric, electrical and modulus spectroscopic characteristics of ZnFe2O4 spinel ferrite nanoparticles synthesized via honey-mediated sol-gel combustion method", Journal of Physics and Chemistry of Solids, 110 (2017) pp.87-99. [DOI:10.1016/j.jpcs.2017.05.029]
  56. [29] Yadav R.S., et al., "Structural, magnetic, optical, dielectric, electrical and modulus spectroscopic characteristics of ZnFe2O4 spinel ferrite nanoparticles synthesized via honey-mediated sol-gel combustion method", Journal of Physics and Chemistry of Solids, 110 (2017) pp.87-99. [DOI:10.1016/j.jpcs.2017.05.029]
  57. [30] Sett A., et al. "ZnO/gamma-Fe2O3 Heterostructure Toward High-Performance Acetone Sensing", IEEE Sensors Journal, 19(19), (2019) pp.8576-8582. [DOI:10.1109/JSEN.2019.2921421]
  58. [30] Sett A., et al. "ZnO/gamma-Fe2O3 Heterostructure Toward High-Performance Acetone Sensing", IEEE Sensors Journal, 19(19), (2019) pp.8576-8582. [DOI:10.1109/JSEN.2019.2921421]
  59. [31] Shaohua Shen et al. "Surface Tuning for Promoted Charge Transfer in Hematite Nanorod Arrays as Water-Splitting Photoanodes. Nano Res", 5(5) (2012) pp. 327-336. [DOI:10.1007/s12274-012-0213-6]
  60. [31] Shaohua Shen et al. "Surface Tuning for Promoted Charge Transfer in Hematite Nanorod Arrays as Water-Splitting Photoanodes. Nano Res", 5(5) (2012) pp. 327-336. [DOI:10.1007/s12274-012-0213-6]
  61. [32] Długosz O., et al "Synthesis of Fe3O4/ZnO nanoparticles and their application for the photodegradation of anionic and cationic dyes", International Journal of Environmental Science and Technology, 18(3) (2021) pp.561-574. [DOI:10.1007/s13762-020-02852-4]
  62. [32] Długosz O., et al "Synthesis of Fe3O4/ZnO nanoparticles and their application for the photodegradation of anionic and cationic dyes", International Journal of Environmental Science and Technology, 18(3) (2021) pp.561-574. [DOI:10.1007/s13762-020-02852-4]