سنتز، مشخصه‌یابی و فعالیت فوتوکاتالیزوری نانوکامپوزیت ZnS/MoS2 پوشش داده شده با نانوذرات Fe3O4

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه ولی عصر عج رفسنجان

چکیده

در این پژوهش، نانوکامپوزیت  ZnS/MoS2به روش گرمابی و نانوکامپوزیت  ZnS/MoS2/Fe3O4 به روش هم­رسوبی سنتز شدند. نخست نانوذرات ZnS سنتز شده و سپس با نانوساختار MoS2 بارگذاری شدند. در ادامه،  ZnS/MoS2 به دست آمده با نانوذرات مگنتایت Fe3O4 پوشش داده شدند و فرآورده پایانی به صورت نانوکامپوزیت ZnS/MoS2/Fe3O4 تهیه گردید. برای شناسایی و مشخصه­یابی نمونه­ها از آنالیزهای پراش سنج پرتوی ایکس (XRD)، طیف­سنج­های تبدیل فوریه فروسرخ (FTIR) و رامان، میکروسکوپ الکترونی تراگسیلی (TEM)، آزمون جذب و واجذب نیتروژن (BET) استفاده شد. با استفاده از طیف­سنجی نورتابی (PL) ویژگی­های نورتابی هر دو نانوکامپوزیت بررسی گردید. طیف تبدیل فوریه فروسرخ به خوبی تشکیل پیوندهای Zn-S،  Fe-Oو Mo-S را نشان داد. الگوی پراش پرتو ایکس حضور ساختار مکعبی ZnS و  Fe3O4و ساختار شش­گوشی MoS2 را به خوبی تأیید کرد. تصاویر میکروسکوپ الکترونی به خوبی تشکیل نانوساختار­ها را نشان دادند. در طیف PL، شدت قله­ی نورتابی کاهش یافته نانوکامپوزیت  ZnS/MoS2/Fe3O4می­تواند ناشی از کاهش بازده بازترکیب الکترون-حفره نمونه­ی سه­تایی در مقایسه با نمونه­ی دوتایی باشد. فعالیت فوتوکاتالیزوری ZnS/MoS2/Fe3O4 بر تخریب رنگ متیل نارنجی (MO) و اسید براون(AB)   با استفاده از تابش نور فرابنفش بررسی شد. نمونه­ فعالیت فوتوکاتالیزوری خوبی از خود نشان داد و هم­چنین به دلیل ویژگی مغناطیسی به راحتی قابل بازیافت است که می­تواند به عنوان فوتوکاتالیزور در واکنش­های دیگر به کار رود.    

کلیدواژه‌ها


عنوان مقاله [English]

Preparation, characterization, and photocatalytic activity of ZnS/MoS2 nanocomposite supported by Fe3O4 nanoparticles

نویسندگان [English]

  • Khorasanipoor
  • Iranmanesh
  • Saeednia
Vali-e-Asr University of Rafsanjan
چکیده [English]

In this study, ZnS/MoS2 nanocomposites were synthesized by hydrothermal and ZnS/MoS2/Fe3O4 nanocomposite by chemical co-precipitation methods. ZnS nanoparticles were synthesized initially and then loaded with MoS2 nanostructure. After that ZnS/MoS2 product was mixed by Fe3O4 nanoparticles and the final product that obtained, was ZnS/MoS2/Fe3O4 nanocomposite. XRD, FTIR, TEM, BET and Raman Analyses were used to identify and characterize the samples. Photoluminescence spectroscopy was employed to investigate the optical properties of both composites. The infrared Fourier transform spectra showed a well developed Zn-S, Fe-O and Mo-S bonds. X-ray diffraction pattern confirmed the presence of cubic structure for ZnS and Fe3O4 and hexagonal structure for MoS2. Electron microscopy images well confirmed the formation of nanostructures. Based on PL spectroscopy, the intensity of the luminescence peak decreased, which could be due to a decreases in the electron-holes recombination percentage of the triplet sample compared to the binary sample. Photocatalytic activity of ZnS/MoS2/Fe3O4 on degradation of methyl orange (MO) and acid brown (AB) dye degradation was investigated using UV radiation. The sample showed good photocatalytic activity and can be easily recycled due to its magnetic properties, which can be used as photocatalyst in other reactions.

کلیدواژه‌ها [English]

  • co-precipitation
  • hydrothermal
  • nanocomposite
  • photocatalytic activity
  • ZnS/MoS2/Fe3O4
  1. [1] Ameta R., Punjabi P.B., Ameta S.C., "Photodegradation of Naphthol green B in the presence of semiconducting antimony trisulphide", J. Serb. Chem. Soc. 76 (7) (2011) 1049-1055. [DOI:10.2298/JSC100425082A]
  2. [1] Ameta R., Punjabi P.B., Ameta S.C., "Photodegradation of Naphthol green B in the presence of semiconducting antimony trisulphide", J. Serb. Chem. Soc. 76 (7) (2011) 1049-1055. [DOI:10.2298/JSC100425082A]
  3. [2] Li H., Li F., Wang G., Sun H., "One-stepsynthesis of fluorescent carbon nanoparticles for degradation of naphthol green under visiblelight", J. Lumin. 156 (2014) 36-40. [DOI:10.1016/j.jlumin.2014.07.007]
  4. [2] Li H., Li F., Wang G., Sun H., "One-stepsynthesis of fluorescent carbon nanoparticles for degradation of naphthol green under visiblelight", J. Lumin. 156 (2014) 36-40. [DOI:10.1016/j.jlumin.2014.07.007]
  5. [3] Feng X., Guo H., Patel K., Zhou H., Lou X., "High performance, recoverable Fe3O4/ZnO nanoparticles for enhanced photocatalytic degradation of phenol", J. Chem. Eng. 244 (2014) 327-334. [DOI:10.1016/j.cej.2014.01.075]
  6. [3] Feng X., Guo H., Patel K., Zhou H., Lou X., "High performance, recoverable Fe3O4/ZnO nanoparticles for enhanced photocatalytic degradation of phenol", J. Chem. Eng. 244 (2014) 327-334. [DOI:10.1016/j.cej.2014.01.075]
  7. [4] Eskandarloo H., Badiei A., Tavakoli A.R., Behnajady M.A., Ziarani G.M., "Simple and safe educational experiments for demonstration of environmental application of heterogeneous photocatalysis process using the example of natural fruit juice dye degradation", J. Mater. Educ. 36 (2014) 111-116.
  8. [4] Eskandarloo H., Badiei A., Tavakoli A.R., Behnajady M.A., Ziarani G.M., "Simple and safe educational experiments for demonstration of environmental application of heterogeneous photocatalysis process using the example of natural fruit juice dye degradation", J. Mater. Educ. 36 (2014) 111-116.
  9. [5] Ghosh Chaudhuri R., Paria S., "Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications", Chem. Rev 112 (2012) 2373-2433. [DOI:10.1021/cr100449n]
  10. [5] Ghosh Chaudhuri R., Paria S., "Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications", Chem. Rev 112 (2012) 2373-2433. [DOI:10.1021/cr100449n]
  11. [6] Rumberg A., "ZnSe thin films grown by chemical vapourdeposition for application as buffer layer in CIGSS solar cells", Thin Solid Films (2000) 361‐362. [DOI:10.1016/S0040-6090(99)00790-7]
  12. [6] Rumberg A., "ZnSe thin films grown by chemical vapourdeposition for application as buffer layer in CIGSS solar cells", Thin Solid Films (2000) 361‐362. [DOI:10.1016/S0040-6090(99)00790-7]
  13. [7] Yoo J.B., Fahrenbruch A.L., Bube R.H, "Effect of a thin intermediate zinc selenide layer on the properties of CuInSe2 solar cells", Solar Cells. 31(2) (1991) 171‐180. [DOI:10.1016/0379-6787(91)90020-P]
  14. [7] Yoo J.B., Fahrenbruch A.L., Bube R.H, "Effect of a thin intermediate zinc selenide layer on the properties of CuInSe2 solar cells", Solar Cells. 31(2) (1991) 171‐180. [DOI:10.1016/0379-6787(91)90020-P]
  15. [8] Haslinda J., Hamid A., "Fabrication, Structural and Electrical Characteristics of Zinc Oxide (ZnO) Thin Films by Direct Current Sputtering", Universiti Sains Malaysia (2009) 1- 4.
  16. [8] Haslinda J., Hamid A., "Fabrication, Structural and Electrical Characteristics of Zinc Oxide (ZnO) Thin Films by Direct Current Sputtering", Universiti Sains Malaysia (2009) 1- 4.
  17. [9] Prabhakar V., Byon C., Jeon S., "Enhanced photocatalytic activity of ZnS nanoparticles loaded with MoS2 nanoflakes by self-assembly approach", Phy. 502 (2016) 103-112. [DOI:10.1016/j.physb.2016.08.050]
  18. [9] Prabhakar V., Byon C., Jeon S., "Enhanced photocatalytic activity of ZnS nanoparticles loaded with MoS2 nanoflakes by self-assembly approach", Phy. 502 (2016) 103-112. [DOI:10.1016/j.physb.2016.08.050]
  19. [10] Fang X., Wu L., Hu L., "ZnS nanostructure arrays: a developing material star", Adv. Mate. 23 (2010) 585-598. [DOI:10.1002/adma.201003624]
  20. [10] Fang X., Wu L., Hu L., "ZnS nanostructure arrays: a developing material star", Adv. Mate. 23 (2010) 585-598. [DOI:10.1002/adma.201003624]
  21. [11] Li C., Li J., Wang Z., Zhang S., Wei G., Zhang J., Wang H., An C., "The synthesis ofollow MoS2 nanospheres assembled by ultrathin nanosheets for an enhanced energy storage", Performance 22 (2016) 4059-4063.
  22. [11] Li C., Li J., Wang Z., Zhang S., Wei G., Zhang J., Wang H., An C., "The synthesis ofollow MoS2 nanospheres assembled by ultrathin nanosheets for an enhanced energy storage", Performance 22 (2016) 4059-4063.
  23. [12] Qin S., Lei W., Liu D., Chen Y., "In-situ and tunable nitrogen-doping of MoS2 nanosheets", Sci. Rep. 4 (2014) 7582. [DOI:10.1038/srep07582]
  24. [12] Qin S., Lei W., Liu D., Chen Y., "In-situ and tunable nitrogen-doping of MoS2 nanosheets", Sci. Rep. 4 (2014) 7582. [DOI:10.1038/srep07582]
  25. [13] Wang L., Jie, Shao Z., Zhang Q., Zhang X., Wang Y., Sun Z., Lee Sh., "MoS2/Si Heterojunction with Vertically Standing Layered Structure for Ultrafast, High Detectivity, SelfDriven Visible Near Infrared Photodetectors", Adv. Funct. Mater. 25 (2015) 2910-2919. [DOI:10.1002/adfm.201500216]
  26. [13] Wang L., Jie, Shao Z., Zhang Q., Zhang X., Wang Y., Sun Z., Lee Sh., "MoS2/Si Heterojunction with Vertically Standing Layered Structure for Ultrafast, High Detectivity, SelfDriven Visible Near Infrared Photodetectors", Adv. Funct. Mater. 25 (2015) 2910-2919. [DOI:10.1002/adfm.201500216]
  27. [14] Shahid H., Liu T., Sufyan M., Aslam N., Zeng W., "Highly reactive 0D ZnS nanospheres and nanoparticles for formaldehyde gas-sensing properties", Sens. Actuators, B 239 (2016) 1243-1250. [DOI:10.1016/j.snb.2016.09.128]
  28. [14] Shahid H., Liu T., Sufyan M., Aslam N., Zeng W., "Highly reactive 0D ZnS nanospheres and nanoparticles for formaldehyde gas-sensing properties", Sens. Actuators, B 239 (2016) 1243-1250. [DOI:10.1016/j.snb.2016.09.128]
  29. [15] COEY J. M. D., "Magnetism and magnetic materials", Cambridge University Press 1(2010).
  30. [15] COEY J. M. D., "Magnetism and magnetic materials", Cambridge University Press 1(2010).
  31. [16] Khorasanipoor N., Iranmanesh P., TabatabaiYazdi Sh., Saeednia S., "Synthesis and characterization of EDTA-assisted ZnS:Hg nanoparticles", J. Lumin. 219 (2020) 116948. [DOI:10.1016/j.jlumin.2019.116948]
  32. [16] Khorasanipoor N., Iranmanesh P., TabatabaiYazdi Sh., Saeednia S., "Synthesis and characterization of EDTA-assisted ZnS:Hg nanoparticles", J. Lumin. 219 (2020) 116948. [DOI:10.1016/j.jlumin.2019.116948]
  33. [17] Li Z., Zhang Y., Zhang W., "Controlled synthesis of CNTs/MoS2/Fe3O4 for high-performance Supercapacitors", J.Mater. Res. Express 4 (2017) 055018. [DOI:10.1088/2053-1591/aa6c3f]
  34. [17] Li Z., Zhang Y., Zhang W., "Controlled synthesis of CNTs/MoS2/Fe3O4 for high-performance Supercapacitors", J.Mater. Res. Express 4 (2017) 055018. [DOI:10.1088/2053-1591/aa6c3f]
  35. [18] Panigrahi P.K., Pathak A., ‏"Aqueous medium synthesis route for randomly stacked molybdenum disulfide", J. Nanopart, (2013) 671214-671224. [DOI:10.1155/2013/671214]
  36. [18] Panigrahi P.K., Pathak A., ‏"Aqueous medium synthesis route for randomly stacked molybdenum disulfide", J. Nanopart, (2013) 671214-671224. [DOI:10.1155/2013/671214]
  37. [19] Rashidi Dafeh S., Iranmanesh P., salarizadeh P., "Fabrication, optimization, and characterization of ultra-small superparamagnetic Fe3O4 and biocompatible Fe3O4@ZnS core/shell magnetic nanoparticles: Ready for biomedicine application", J. Mater. Sci. Eng. C 98 (2019) 205-212. [DOI:10.1016/j.msec.2018.12.147]
  38. [19] Rashidi Dafeh S., Iranmanesh P., salarizadeh P., "Fabrication, optimization, and characterization of ultra-small superparamagnetic Fe3O4 and biocompatible Fe3O4@ZnS core/shell magnetic nanoparticles: Ready for biomedicine application", J. Mater. Sci. Eng. C 98 (2019) 205-212. [DOI:10.1016/j.msec.2018.12.147]
  39. [20] Osim W., Stojanovic A., Akbarzadeh J., Peterlik H., Wolfgang Binder H., "Surface modification of MoS2 nanoparticles with ionic liquid ligands: Towards highly dispersed nanoparticles", Chem.Commun 49(81) (2013) 9311-9313. [DOI:10.1039/c3cc45305g]
  40. [20] Osim W., Stojanovic A., Akbarzadeh J., Peterlik H., Wolfgang Binder H., "Surface modification of MoS2 nanoparticles with ionic liquid ligands: Towards highly dispersed nanoparticles", Chem.Commun 49(81) (2013) 9311-9313. [DOI:10.1039/c3cc45305g]
  41. [21] Liu L., Jiang W., Yao L., Yang X.W., Chen B.H., Wu S.X., Li F.S., "Fabrication of Fluorescent Magnetic Fe3O4@ZnS Nanocomposites", J. Nanosci. Nanotechnol. 14 (2014) 5047-5053. [DOI:10.1166/jnn.2014.8239]
  42. [21] Liu L., Jiang W., Yao L., Yang X.W., Chen B.H., Wu S.X., Li F.S., "Fabrication of Fluorescent Magnetic Fe3O4@ZnS Nanocomposites", J. Nanosci. Nanotechnol. 14 (2014) 5047-5053. [DOI:10.1166/jnn.2014.8239]
  43. [22] Vattikuti V.P., Byon C., Jeon S., "Enhanced photocatalytic activity of ZnS nanoparticles loaded with MoS2 nanoflakes by self-assembly approach", Phy. 502 (2016) 103-112 [DOI:10.1016/j.physb.2016.08.050]
  44. [22] Vattikuti V.P., Byon C., Jeon S., "Enhanced photocatalytic activity of ZnS nanoparticles loaded with MoS2 nanoflakes by self-assembly approach", Phy. 502 (2016) 103-112 [DOI:10.1016/j.physb.2016.08.050]
  45. [23] Kneipp K., Kneipp H., Itzkan I., Dasari R.R., Feld M.S., "Ultrasensitive chemical analysis by Raman spectroscopy", Chem. rev. 99(10) (1999) 2957-2976. [DOI:10.1021/cr980133r]
  46. [23] Kneipp K., Kneipp H., Itzkan I., Dasari R.R., Feld M.S., "Ultrasensitive chemical analysis by Raman spectroscopy", Chem. rev. 99(10) (1999) 2957-2976. [DOI:10.1021/cr980133r]
  47. [24] Gomathi P.T., Sahatiya P., Badhulika S., "Solution processed ZnS-MoS2 for optoelectronic applications", International Conference on Nanotechnology (IEEE-NANO) (2017) 355-357. [DOI:10.1109/NANO.2017.8117266]
  48. [24] Gomathi P.T., Sahatiya P., Badhulika S., "Solution processed ZnS-MoS2 for optoelectronic applications", International Conference on Nanotechnology (IEEE-NANO) (2017) 355-357. [DOI:10.1109/NANO.2017.8117266]
  49. [25] Cheng J., Han L., Wei Y., Chen Q., "Enhancement of photocatalytic property on ZnS/MoS2 composite under visible light irradiation", In MATEC Web of Conferences 108 (2017) 01008. [DOI:10.1051/matecconf/201710801008]
  50. [25] Cheng J., Han L., Wei Y., Chen Q., "Enhancement of photocatalytic property on ZnS/MoS2 composite under visible light irradiation", In MATEC Web of Conferences 108 (2017) 01008. [DOI:10.1051/matecconf/201710801008]
  51. [26] Eda G., Yamaguchi H., Voiry D., Fujita T., Chen M., Chhowalla M., "Photoluminescence from chemically exfoliated MoS2", Nano Lett. 11(12) (2011) 5111-5116. [DOI:10.1021/nl201874w]
  52. [26] Eda G., Yamaguchi H., Voiry D., Fujita T., Chen M., Chhowalla M., "Photoluminescence from chemically exfoliated MoS2", Nano Lett. 11(12) (2011) 5111-5116. [DOI:10.1021/nl201874w]
  53. [27] Vijayalakshmi S., Elaiyappillai E., Johnson P.M., Lydia I.S., "Multifunctional magnetic CoFe2O4 nanoparticles for the photocatalytic discoloration of aqueous methyl violet dye and energy storage applications", J. Mater. Sci. Mater. Electron. 31 (13) (2020) 10738-10749. [DOI:10.1007/s10854-020-03624-z]
  54. [27] Vijayalakshmi S., Elaiyappillai E., Johnson P.M., Lydia I.S., "Multifunctional magnetic CoFe2O4 nanoparticles for the photocatalytic discoloration of aqueous methyl violet dye and energy storage applications", J. Mater. Sci. Mater. Electron. 31 (13) (2020) 10738-10749. [DOI:10.1007/s10854-020-03624-z]
  55. [28] Shahi S., Saeednia S., Iranmanesh P., Hatefi Ardakani M., "Influence of synthesis parameters on the optical and photocatalytic properties of solvo/hydrothermal CuS and ZnS nanoparticles", Luminescence 36 (1) (2021) 180-191. [DOI:10.1002/bio.3933]
  56. [28] Shahi S., Saeednia S., Iranmanesh P., Hatefi Ardakani M., "Influence of synthesis parameters on the optical and photocatalytic properties of solvo/hydrothermal CuS and ZnS nanoparticles", Luminescence 36 (1) (2021) 180-191. [DOI:10.1002/bio.3933]
  57. [29] Hosseiny Davarani S.S., Moazami H.R., Yousefi T., Abrari M., "The flexible route for the electrosynthesis of visible light active CdxZn1-xO nanostructures by sequential anodic dissolution of metallic electrodes", J. Water Environ. Nanotechnol. 3 (2018) 235-242.
  58. [29] Hosseiny Davarani S.S., Moazami H.R., Yousefi T., Abrari M., "The flexible route for the electrosynthesis of visible light active CdxZn1-xO nanostructures by sequential anodic dissolution of metallic electrodes", J. Water Environ. Nanotechnol. 3 (2018) 235-242.
  59. [30] Amdeha E., R.A. El-Salamony R.A., Al-Sabagh A.M., "Enhancing the photocatalytic activity of Ga2O3-TiO2 nanocomposites using sonication amplitudes for the degradation of Rhodamine B dye", Appl. Organomet. Chem. 34 (2020) 1-11. [DOI:10.1002/aoc.5336]
  60. [30] Amdeha E., R.A. El-Salamony R.A., Al-Sabagh A.M., "Enhancing the photocatalytic activity of Ga2O3-TiO2 nanocomposites using sonication amplitudes for the degradation of Rhodamine B dye", Appl. Organomet. Chem. 34 (2020) 1-11. [DOI:10.1002/aoc.5336]