محاسبه تبادل جرمی عناصر در کانسار مس خود، غرب یزد

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مجتمع آموزش عالی گناباد

2 دانشگاه سیستان و بلوچستان

چکیده

کانسار مس خود در غرب یزد از مهم­ترین کانسارهای اسکارنی منطقه معدنی تفت بوده که در بخش میانی کمربند ماگمایی ارومیه- دختر واقع است. نفوذ استوک گرانودیوریتی خود در بخش کربناتی سازند نایبند منجر به تشکیل کانسار اسکارنی مس گردیده و پهنه­­های اسکارنی متنوعی را ایجاد کرده است. تبادل­های جرمی منجر به تغییرات کانی­شناسی در پهنه­ های مختلف اسکارنی شده است. در این پژوهش، تغییرات جرمی عناصر و تحرک عنصری در پهنه­‌های اسکارنی کانسار خود نسبت به سنگ­های کربناتی دگرسان نشده محاسبه گردیده است. نتایج نشان داد که عناصر اصلی سیلسیم، آهن و منگنز بیش­ترین افزایش جرم را در پهنه­‌های اسکارنی دارند. عناصر خاکی نادر و همچنین سایر عناصر کمیاب چون ربیدیم، اورانیم، وانادیم، نئوبیم، کروم، ایتریم، مس و روی نیز افزایش جرم نشان داده­اند. میزان غنی شدگی عناصر خاکی نادر سبک می­تواند به فراوانی گارنت­ها و ترکیب آن­ها نسبت داده شود، به طوری که مقادیر عناصر خاکی نادر سبک در گارنت­های آلومینیم­دار نسبت به گارنت­های آندرادیتی بیشتر است، چگونگی و علل ایجاد این تغییرات با استفاده از روش زمین­شیمیایی محاسبه تغییرات جرم بحث شده است.       

کلیدواژه‌ها


عنوان مقاله [English]

Mass Change Calculation of Elements in the Khut Cu Deposit, West of Yazd

نویسندگان [English]

  • Azam Zahedi 1
  • Mohammad Boomeri 2
1 University of Gonabad
2 University of Sistan&Baloochestan
چکیده [English]

Khut Copper deposit, located in west of Yazd, is one of the most important skarn deposits in Taft mining area where it is locateds in the middle part of the Urumieh-Dokhtar magmatic belt. Intrusion of Khut granodioritic stock into carbonate component of the Nayband Formation has led to the formation of Cu skarn deposit and different skarn zones. Mass changes has led to mineralogical variations in the different skarn zones. In this paper, element mass changes and element mobility in the skarn zones relative to the unaltered carbonates rocks are calculated. Results of these calculations show the most mass increase in the major elements of Si, Fe and Mn in the skarn zones. REE and the other rare elements such as Rb, U, V, Nb,Cr, Y, Cu and Zn have also shown mass increase. Enrichment value in the light rare earth elements can be attributed to the abundance of garnets and its composition, so that the amounts of light rare earth elements in the Al bearing garnets are higher than andradite garnets. In this paper, the causes of these changes and their effects are discussed by using geochemical method of mass change calculations.

کلیدواژه‌ها [English]

  • Mass Changes
  • Skarn zones
  • Khut
  • Yazd
  1. [1] Yazdi M., "The study of economic geology and lithology in Khut ore deposit (MSc thesis)", Shahid Beheshti University, Tehran, (1992) 207p.
  2. [1] Yazdi M., "The study of economic geology and lithology in Khut ore deposit (MSc thesis)", Shahid Beheshti University, Tehran, (1992) 207p.
  3. [2] Zahedi A., "Geochemistry of Cu-Fe skarn occurrences and related intrusive rocks from the Khut and Panah-Kuh area, west of Yazd, Central Iran", (PhD thesis). University of Sistan and Baluchestan, Zahedan, (2014) 430p (in Persian(
  4. [2] Zahedi A., "Geochemistry of Cu-Fe skarn occurrences and related intrusive rocks from the Khut and Panah-Kuh area, west of Yazd, Central Iran", (PhD thesis). University of Sistan and Baluchestan, Zahedan, (2014) 430p (in Persian(
  5. [3] MacLean W. H., "Mass change calculations in altered rocks series", mineralium deposita, 25 )1990) 44-49. [DOI:10.1007/BF03326382]
  6. [3] MacLean W. H., "Mass change calculations in altered rocks series", mineralium deposita, 25 )1990) 44-49. [DOI:10.1007/BF03326382]
  7. [4] Zahedi A., Boomeri M., "Geochemical characteristics, origin, and evolution of ore-forming fluids of the Khut copper skarn deposit, west of Yazd in Central Iran", Resource Geology, 64 (2014) 209-232. [DOI:10.1111/rge.12037]
  8. [4] Zahedi A., Boomeri M., "Geochemical characteristics, origin, and evolution of ore-forming fluids of the Khut copper skarn deposit, west of Yazd in Central Iran", Resource Geology, 64 (2014) 209-232. [DOI:10.1111/rge.12037]
  9. [5] Meinert L.D., "Application of skarn deposit zonation models to mineral exploration", Exploration and Mining Geology, 6 )1997( 185-208.
  10. [5] Meinert L.D., "Application of skarn deposit zonation models to mineral exploration", Exploration and Mining Geology, 6 )1997( 185-208.
  11. [6] Gresens R. L., "Composition-volume relationships of metasomatism", Chemical Geology, 2 (1967) 47-55. [DOI:10.1016/0009-2541(67)90004-6]
  12. [6] Gresens R. L., "Composition-volume relationships of metasomatism", Chemical Geology, 2 (1967) 47-55. [DOI:10.1016/0009-2541(67)90004-6]
  13. [7] Grant J.A., "The isocon diagram, a simple solution to Gresen٫s equation for metasomatic alteration", Economic Geology, 81 )1986( 1976-1982. [DOI:10.2113/gsecongeo.81.8.1976]
  14. [7] Grant J.A., "The isocon diagram, a simple solution to Gresen٫s equation for metasomatic alteration", Economic Geology, 81 )1986( 1976-1982. [DOI:10.2113/gsecongeo.81.8.1976]
  15. [8] Nesbitt H.W., Markovics G., Price R.C., "Chemical processes affecting alkalis and alkaline earths continental weathering", Geochemica et Cosmochimica Acta, 44 (1980) 1659-1666. [DOI:10.1016/0016-7037(80)90218-5]
  16. [8] Nesbitt H.W., Markovics G., Price R.C., "Chemical processes affecting alkalis and alkaline earths continental weathering", Geochemica et Cosmochimica Acta, 44 (1980) 1659-1666. [DOI:10.1016/0016-7037(80)90218-5]
  17. [9] MacLean W.H., Kranidiotis P., "Immobile elements as monitors of mass transfer in hydrothermal alteration: Phelps Dodge massive sulfide deposite, Matagami. Qubec", Economic Geology, 82 )1987( 951-962. [DOI:10.2113/gsecongeo.82.4.951]
  18. [9] MacLean W.H., Kranidiotis P., "Immobile elements as monitors of mass transfer in hydrothermal alteration: Phelps Dodge massive sulfide deposite, Matagami. Qubec", Economic Geology, 82 )1987( 951-962. [DOI:10.2113/gsecongeo.82.4.951]
  19. [10] Griffin W.L., Smith D., Ryan C.G., O'Reilly S.Y., Win T.T., "Trace-element zoning in mantle minerals: Metasomatism and thermal events in the upper mantle", Canadian Mineralogist, 34 ) 1996( 1179-1193.
  20. [10] Griffin W.L., Smith D., Ryan C.G., O'Reilly S.Y., Win T.T., "Trace-element zoning in mantle minerals: Metasomatism and thermal events in the upper mantle", Canadian Mineralogist, 34 ) 1996( 1179-1193.
  21. [11] Jenner G.A ., "Trace element geochemistry of igneous rocks: Geochemical nomenclature and analytical geochemistry, in Wyman", D.A ed., "Trace element geochemistry of volcanic rocks: Applications for massive sulphide exploration" Geological Association of Canada, Short Course Notes, 12) 1996( 51-77.
  22. [11] Jenner G.A ., "Trace element geochemistry of igneous rocks: Geochemical nomenclature and analytical geochemistry, in Wyman", D.A ed., "Trace element geochemistry of volcanic rocks: Applications for massive sulphide exploration" Geological Association of Canada, Short Course Notes, 12) 1996( 51-77.
  23. [12] Mason B., Moore C.B., "Principle of geochemistry" Wiley, NewYork, 344p, 1982.
  24. [12] Mason B., Moore C.B., "Principle of geochemistry" Wiley, NewYork, 344p, 1982.
  25. [13] Gaspar M., Knaack C., Meinert L.D., Moretti R., "REE in skarn system: A LA-ICP-MS study of garnet from the Crown Jewel gold deposit" Geochemica et Cosmochimica Acta, 72 )2008( 185-205. [DOI:10.1016/j.gca.2007.09.033]
  26. [13] Gaspar M., Knaack C., Meinert L.D., Moretti R., "REE in skarn system: A LA-ICP-MS study of garnet from the Crown Jewel gold deposit" Geochemica et Cosmochimica Acta, 72 )2008( 185-205. [DOI:10.1016/j.gca.2007.09.033]