کانی‌شناسی و زمین‌شیمی عناصر جزئی پهنه دگرسانی آرژیلیک: مثالی از منطقه شنین، ایالت فلززایی طارم- هشتجین، ایران

نوع مقاله : مقاله پژوهشی

نویسنده

گروه زمین شناسی، دانشکده علوم، دانشگاه ارومیه، ارومیه، ایران

چکیده

پهنه دگرسانی آرژیلیک منطقه شنین (غرب تاکستان، استان قزوین، ایالت فلززایی طارم- هشتجین) ناشی از نفوذ توده­های آذرین گرانیتی به سن الیگوسن به درون سنگ­های داسیتی- ریوداسیتی ائوسن میانی است. بررسی به روش پراش پرتو X (XRD) نشان می‌دهد که کوارتز و کائولینیت دو فاز کانیایی اصلی این پهنه دگرسانی هستند که با فازهای کانیایی فرعی چون هالویزیت، اسمکتیت، آلونیت، پیریت، روتیل، گوتیت، ایلیت، پلاژیوکلاز و سوانبرژیت همراهی می­شوند. محاسبه تغییرهای تعادل جرم عناصر نشان می‌دهند که عناصر کم‌تحرکی چون Zr، Nb، Th، Ta و Y طی فرآیندهای دگرسانی آرژیلیک دچار تهی‌شدگی شده‌اند. این رفتار غیرعادی دلیلی بر pH پایین سیال­های مسئول دگرسانی، نسبت بالای آب به سنگ و فراوانی یون‌های کمپلکس کننده در محلول است. کاهش جرم U بیانگر طبیعت اکسایشی سیال­های مسئول دگرسانی است. در مجموع، نتایج بدست آمده از زمین‌شیمی تعادل جرم و ضرایب همبستگی بین عناصر آشکار می‌کنند که جذب سطحی توسط کانی‌های رسی و جانشینی همریختی با روتیل نقش مهمی در توزیع و تثبت Ga، Hf و V در پهنه دگرسانی مورد بررسی داشته است. غنی‌شدگی قابل توجه Mo، Sb و As، نسبت Rb/Sr بسیار پایین، ترکیب کانی‌شناسی پهنه دگرسانی و رخداد کانه‌زایی نوع رگه - رگچه‌ای (پیریت، کالکوپیریت، گالن و گوتیت) نشان می‌دهند که منطقه شنین شرایط بسیار مناسبی برای کانی‌سازی فراگرمایی سولفیدشدگی بالا دارد. بررسی‌های بیشتر آشکار
می‌کنند که توزیع و جدایش عناصر خاکی نادر (REE) طی تشکیل و تکامل پهنه دگرسانی آرژیلیک منطقه شنین با کانی‌های فیلوسیلیکاتی، آلونیت و سوانبرژیت کنترل شده است.  

کلیدواژه‌ها


عنوان مقاله [English]

Mineralogy and trace elements geochemistry of argillic alteration: An example from the Shanin area, Tarom-Hashtjin metalogenic province, Iran

نویسنده [English]

  • Ali Abedini
Department of Geology, Faculty of Science, Urmia University, Urmia, Iran
چکیده [English]

The argillic alteration zone of the Shanin area (west of Takestan, Gazvin province, Tarom-Hashtjin metalogenic province) is the product of intrusion of granitic igneous bodies of Oligocene age into middle Eocene dacite-rhyodacite rocks. X-ray diffraction (XRD) analyses indicate that Quartz and kaolinite are the two main mineralogical phases of this alteration zone, which are accompanied by accessory mineal phases such as halloysite, smectite, alunite, pyrite, rutile, goethite, illite, plagioclase, and svanbergite. Calculations of mass balance changes of elements show that immobile elements such as Zr, Nb, Th, Ta, and Y have been depleted during the argillic alteration processes. This abnormal behavior is a reason for the low pH of the fluids responsible for alteration, the high ratio of water to rock, and the abundance of complexing ions in the solution. The decrease of the mass of U indicates the oxidizing nature of the fluids responsible for the alteration. Combining the results obtained from mass balance geochemistry and correlation coefficients between elements reveal that absorption by clay minerals and isomorphic substitution by rutile played an important role in the distribution and fixation of Ga, Hf, and V in the studied alteration zone. The significant enrichment of Mo, Sb, and As, the very low Rb/Sr ratio, the mineralogical composition of the alteration zone, and the occurrence of vein-veinlet type ore mineralization (pyrite, chalcopyrite, galena, and goethite) show that the Shanin area has suitable conditions for high-sulfidation epithermal mineralization. Further investigations reveal that the distribution and fractionation of rare earth elements (REE) during the formation and evolution of the argillic alteration zone of Shanin area was controlled by phyllosilicate minerals, alunite and svanbergite.
 

کلیدواژه‌ها [English]

  • Phyllosilicate minerals
  • Argillic alteration
  • REE fractionation
  • Mass balance
  • Shanin
  • Takestan
[1] Ghasemi Siani M., Ebrahimi Fard H., "Geochemistry and petrogenesis of granitoid rocks in the Tarom-Hashtjin metallogenic province, western Alborz", Petrological Journal 53 (2023) 139–194.
[2] Ghasemi Siani M., Lentz D. R., "Lithogeochemistry of various hydrothermal alteration types associated with precious and base metal epithermal deposits in the Tarom-Hashtjin metallogenic province, NW Iran: Implications for regional exploration", Journal of Geochemical Exploration 232 (2022) 106903.
[3] Mousavi Motlagh S. H., Ghaderi M., "The Chargar Au-Cu deposit: An example of low-sulfidation epithermal mineralization from the Tarom subzone, NW Iran", Journal of Mineralogy and Geochemistry 196 (2019) 43–66.
[4] Foudazi M., Karizaki H. S., Qolipour M., "Petrology and geochemistry of granitoid rocks in NW of Takestan", Scientific Quarterly Journal of Geosciences 24 (2015) 21–28.
[5] Ghasemi Siani M. G., Lentz D. R., Nazarian M., "Geochemistry of igneous rocks associated with mineral deposits in the Tarom-Hashtjin metallogenic province, NW Iran: An analysis of the controls on epithermal and related porphyry-style mineralization", Ore Geology Reviews 126 (2020) 103753.
[6] Mokhtari M. A. A., Kouhestani H., Saeedi, A., "Investigation on type and origin of copper mineralization at Aliabad Mousavi-Khanchy occurrence, east of Zanjan, using petrological, mineralogical and geochemical data", Scientific Quarterly Journal of Geosciences 25 (2016) 259–270.
[7] Abedini A., Rezaei Azizi M., Calagari A. A., "The Lanthanide tetrad effect in argillic alteration: An example from the Jizvan district, northern Iran", Acta Geologica Sinica-English Edition 92 (2018) 1468–1485
[8] Abedini A., "Geochemistry of argillic alteration: A case study from the Jizvan area, Tarom-Hashtjin zone", Scientific Quarterly Journal of Geosciences 26 (2017) 3–160.
[9] Nabavi M. H., "An introduction to the geology of Iran", Geological Survey of Iran Publication (1976) 105p.
 [10] Alai Mahabadi S., Fonoudi M., "Geological Map of Takestan Quadrangle, scale: 1:100000", Geological Survey of Iran (1992).
[11] Ece O. I., Schroeder P. A., Smilley M. J., Wampler J. M., "Acid-sulphate hydrothermal alteration of andesitic tuffs and genesis of halloysite and alunite deposits in the Biga Peninsula, Turkey", Clay Minerals 43 (2008) 281–315.
[12] Hedenquist J. W., Arribas J. A., Gonzales-Urien E., "Exploration for epithermal gold deposits", Review in Economic Geology 13 (2000) 245–277.
[13] Dill H. G., Botz R., Luppold F.W., "Hypogene and supergene alteration of the Late Palaeozoic Ratburi limestone during the Mesozoic and Cenozoic (Thailand, Surat Thani Province): Implications for the concentration of mineral commodities and hydrocarbons", Inernational Journal of Earth Sciences 94 (2005) 24–46.
[14] Ercan H. Ü., Ece Ö. I., Çiftçi E., "Comparison of epithermal kaolin deposits from the Etili area (Çanakkale, Turkey): Mineralogical, geochemical, and isotopic characteristics", Clays and Clay Minerals 70 (2020) 753–779.
[15] Berger B. R., Henley R. W., "Advances in the understanding of epithermal gold-silver deposits, with special reference to the western United States", Economic Geology, Monograph 6 (1989).
[16] Schoen R., White D. E., Hemley J. J., "Argillization by descending acid at Steamboat Springs, Nevada", Clays and Clay Minerals 22 (1974) 1–22.
[17] Reyes A. G., "Petrology of Philippine geothermal systems and the application of alteration mineralogy to their assessment", Journal of Volcanology and Geothermal Research 43 (1990) 279–309.
[18] Brimhall G. H., Dietrich W. E., "Constitutive mass balance Differential feldspar weathering in granites relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: Results on weathering and pedrogenesis", Geochimica et Cosmochimica Acta 51 (1987) 567–587.
[19] Nesbitt H. W., Markovics G., "Weathering of granodioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments", Geochimica et Cosmochimica Acta 61 (1997) 1653–1670.
[20] Nesbitt H. W., "Mobility and fractionation of rare earth elements during weathering of a granodiorite", Nature 279 (1979) 206–210.
[21] Grant J. A., "The isocon diagram; a simple solution to Gresen’s equation for metasomatic alteration ", Economic Geology 81 (1986) 1976–1982.
[22] Arslan M., Kadir, S., Abdioglu E., Kolayli H., "Origin and formation of kaolin minerals in saprolite of Tertiary alkaline volcanic rocks, Eastern Pontides, NE Turkey", Clay Minerals 41 (2006) 597–617.
[23] Abedini A., Khosravi M., "Geochemical characteristics of rare earth elements in argillic alteration zone: An example from the Kharvana area, NW Iran", Jordan Journal of Earth and Environmental Sciences 15 (2014) 20–27.
[24] Mcdougall J., Lovering J. F., "Fractionation of chromium, nickel, cobalt and copper in a differntiated dolerite-granophyre sequence at Red Hill, Tasmania", Journal of Geological Society of Australia 10 (1963) 325–338.
[25] Jansson N. F., Liu W., "Controls on cobalt and nickel distribution in hydrothermal sulphide deposits in Bergslagen, Sweden-constraints from solubility modeling", Geologiska Föreningens i Stockholm Förhandlingar 142 (2020) 87–95.
[26] Jiang S.Y., "Controls on the mobility of high field strength elements (HFSE), U, and Th in an ancient submarine hydrothermal system of the Proterozoic Sullivan Pb-Zn-Ag deposit, British Columbia, Canada", Geochemical Journal 34 (2000) 341–348.
[27] Fulignati P., Gioncada A., Sbrana A., "Rare earth element (REE) behaviour in the alteration facies of the active magmatic-hydrothermal system of Vulcano (Aeolian Islands, Italy)", Journal of Volcanology and Geothermal Research 88 (1999) 325–342.
[28] Salvi S., Fontan F., Monchoux P., Williams-Jones A., Eand Moine B., "Hydrothermal mobilization of high field strength elements in alkaline igneous systems: Evidence from the Tamazeght Complex (Morocco)", Economic Geology 95 (2000) 559–576.
[29] Karakaya M. C., Karakaya N., Küpeli S., Yavuz F., "Mineralogy and geochemical behavior of trace elements of hydrothermal alteration types in the volcanogenic massive sulfide deposits, NE Turkey", Ore Geology Reviews 48 (2012) 197–224.
[30] Rubin J. N., Henry C. D., Price J. G., "The mobility of zirconium and other “immobile” elements during hydrothermal alteration", Chemical Geology 110 (1993) 29-47.
[31] Douville E., Bienvenu P., Charlou J. L., "Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems", Geochimica et Cosmochimica Acta 63 (1999) 627–643.
[32] Abedini A., Calagari A. A., "Geochemical characteristics of the Abgharm kaolin deposit, NW Iran", Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen 278 (2015) 335–350.
[33] Khashgerel B. E., Kavalieris I., Hayashi, K., "Mineralogy, textures, and whole-rock geochemistry of advanced argillic alteration: Hugo Dummett porphyry Cu–Au deposit, Oyu Tolgoi mineral district, Mongolia", Mineralium Deposita 43 (2008) 913–932.
[34] Ndjigui P. D., Bilong P., Bitom D., Dia, A., "Mobilization and redistribution of major and trace elements in two weathering profiles developed on serpentinites in the Lomié ultramafic complex, Southeast Cameroon", Journal of African Earth Sciences 50 (2008) 305–328.
[35] Meinhold G., "Rutile and its applications in earth sciences", Earth-Science Reviews 102 (2010) 1–28.
[36] Boyle R. W., Jonasson I. R., "The geochemistry of antimony and its use as an indicator element in geochemical prospecting", Journal of Geochemical Exploration 20 (1984) 223–302.
[37] Hikov A., "Geochemistry of hydrothermally altered rocks from the Asarel porphyry copper deposit, Central Srednogorie", Geologica Balcanica 42 (2013) 3–28.
[38] Carlile J. C., Davey G. R., Kadir I., Langmead R. P., Rafferty W. J., "Discovery and exploration of the Gosowong epithermal gold deposit, Halmahera, Indonesia", Journal of Geochemical Exploration 60 (1998) 207–227.
[39] White N. C., Hedenquist J. W., "Epithermal gold deposits: Styles, characteristics and exploration", SEG Discovery 23 (1995) 9–13.
[40] Alfieris D., Voudouris P., Spry P. G., "Shallow submarine epithermal Pb–Zn–Cu–Au–Ag–Te mineralization on western Milos Island, Aegean Volcanic Arc, Greece: Mineralogical, geological and geochemical constraints", Ore Geology Reviews 53 (2013) 159–180.
[41] Michard A., "Rare earth element systematics in hydrothermal fluids", Geochimica et Cosmochimica Acta 53 (1989) 745–750.
[42] Lottermoser B., "Rare earth elements and hydrothermal ore formation processes", Ore Geology Reviews 7 (1992) 25–41.
[43] Hikov A., "Aluminium phosphate-sulphate minerals in advanced argillic alteration zones in Petelovo and Pesovets deposits, Central Srednogorie", Comptes Rendus de l’Academie bulgare des Sciences 57 (2004) 61–68.
[44] Chang Z., Hedenquist J., White N., Cooke D., Roach M., Deyell C., Garcia J., Bruce Gemmell J., McKnight S., Cuison A., "Exploration tools for linked porphyry and epithermal deposits: Example from the Mankayan intrusion-centered Cu-Au district, Luzon, Philippines", Economic Geology 106 (2011) 1365–1398.
[45] Abdioğlu E., Arslan M., Kadir S., Temozel I., "Alteration mineralogy, lithochemistry and stable isotope geochemistry of the Murgul (Artvin, NE Turkey) volcanic hosted massive sulfide deposit: Implications for the alteration age and ore forming fluids", Ore Geology Reviews 66 (2015) 219–242.
[46] Kikawada Y., Uruga, M., Oi T., Honda T., "Mobility of lanthanides accompanying the formation of alunite group minerals", Journal of Radioanalytical and Nuclear Chemistry 261 (2004) 651–659.
[47] Arribas A., Cunningham C., Rytuba J., Rye R., Kelly W., Podwysocki M., McKee E., Tosdal R., "Geology, geochronology, fluid inclusion, and isotope geochemistry of the Rodalquilar gold alunite deposit, Spain", Economic Geology 90 (1995) 795–822.
[48] Pirajno F., "Volcanic-hosted epithermal systems in northwest Turkey", South African Journal of Geology 98 (1995) 13–24.
[49] Hikov A., Lerouge, C., Velinova, N., "Geochemistry of alunite group minerals in advanced argillic altered rocks from the Asarel porphyry copper deposit, Central Sredno­gorie", Review of the Bulgarian Geological Society 71 (2010) 133–148.
[50] Hedenquist J., Matsuhisa Y., Izawa E., White N., Giggenbach W., Aoki M., "Geology, geochemistry, and origin of high sulphidation Cu-Au mineralization in the Nansatsu District, Japan", Economic Geology 89 (1994) 1–30.
[51] Deyell C., Rye R., Landis G., Bissig T., "Alunite and the role of magmatic fluids in the Tambo high-sulfidation deposit, El Indio–Pascua belt, Chile", Chemical Geology 215 (2005) 185–218.
[52] Stoffregen R., Alpers C., "Svanbergite and woodhouseite in hydrothermal ore diposits: Implications for apatite destruction during advanced argillic alteration", Canadian Mineralogist 25 (1987) 201–212.
[53] Olade M., Fletcher W., "Primary dispersion of rubidium and strontium around porphyry copper deposits, Highland Valley, British Columbia", Economic Geology 70 (1975) 15–21.