[1] Ghasemi Siani M., Ebrahimi Fard H., "Geochemistry and petrogenesis of granitoid rocks in the Tarom-Hashtjin metallogenic province, western Alborz", Petrological Journal 53 (2023) 139–194.
[2] Ghasemi Siani M., Lentz D. R., "Lithogeochemistry of various hydrothermal alteration types associated with precious and base metal epithermal deposits in the Tarom-Hashtjin metallogenic province, NW Iran: Implications for regional exploration", Journal of Geochemical Exploration 232 (2022) 106903.
[3] Mousavi Motlagh S. H., Ghaderi M., "The Chargar Au-Cu deposit: An example of low-sulfidation epithermal mineralization from the Tarom subzone, NW Iran", Journal of Mineralogy and Geochemistry 196 (2019) 43–66.
[4] Foudazi M., Karizaki H. S., Qolipour M., "Petrology and geochemistry of granitoid rocks in NW of Takestan", Scientific Quarterly Journal of Geosciences 24 (2015) 21–28.
[5] Ghasemi Siani M. G., Lentz D. R., Nazarian M., "Geochemistry of igneous rocks associated with mineral deposits in the Tarom-Hashtjin metallogenic province, NW Iran: An analysis of the controls on epithermal and related porphyry-style mineralization", Ore Geology Reviews 126 (2020) 103753.
[6] Mokhtari M. A. A., Kouhestani H., Saeedi, A., "Investigation on type and origin of copper mineralization at Aliabad Mousavi-Khanchy occurrence, east of Zanjan, using petrological, mineralogical and geochemical data", Scientific Quarterly Journal of Geosciences 25 (2016) 259–270.
[7] Abedini A., Rezaei Azizi M., Calagari A. A., "
The Lanthanide tetrad effect in argillic alteration: An example from the Jizvan district, northern Iran",
Acta Geologica Sinica-English Edition 92 (2018) 1468–1485
[8] Abedini A., "Geochemistry of argillic alteration: A case study from the Jizvan area, Tarom-Hashtjin zone", Scientific Quarterly Journal of Geosciences 26 (2017) 3–160.
[9] Nabavi M. H., "An introduction to the geology of Iran", Geological Survey of Iran Publication (1976) 105p.
[10] Alai Mahabadi S., Fonoudi M., "Geological Map of Takestan Quadrangle, scale: 1:100000", Geological Survey of Iran (1992).
[11] Ece O. I., Schroeder P. A., Smilley M. J., Wampler J. M., "Acid-sulphate hydrothermal alteration of andesitic tuffs and genesis of halloysite and alunite deposits in the Biga Peninsula, Turkey", Clay Minerals 43 (2008) 281–315.
[12] Hedenquist J. W., Arribas J. A., Gonzales-Urien E., "Exploration for epithermal gold deposits", Review in Economic Geology 13 (2000) 245–277.
[13] Dill H. G., Botz R., Luppold F.W., "Hypogene and supergene alteration of the Late Palaeozoic Ratburi limestone during the Mesozoic and Cenozoic (Thailand, Surat Thani Province): Implications for the concentration of mineral commodities and hydrocarbons", Inernational Journal of Earth Sciences 94 (2005) 24–46.
[14] Ercan H. Ü., Ece Ö. I., Çiftçi E., "
Comparison of epithermal kaolin deposits from the Etili area (Çanakkale, Turkey): Mineralogical, geochemical, and isotopic characteristics",
Clays and Clay Minerals 70 (2020) 753–779.
[15] Berger B. R., Henley R. W., "Advances in the understanding of epithermal gold-silver deposits, with special reference to the western United States", Economic Geology, Monograph 6 (1989).
[16] Schoen R., White D. E., Hemley J. J., "Argillization by descending acid at Steamboat Springs, Nevada", Clays and Clay Minerals 22 (1974) 1–22.
[17] Reyes A. G., "Petrology of Philippine geothermal systems and the application of alteration mineralogy to their assessment", Journal of Volcanology and Geothermal Research 43 (1990) 279–309.
[18] Brimhall G. H., Dietrich W. E., "Constitutive mass balance Differential feldspar weathering in granites relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: Results on weathering and pedrogenesis", Geochimica et Cosmochimica Acta 51 (1987) 567–587.
[19] Nesbitt H. W., Markovics G., "Weathering of granodioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments", Geochimica et Cosmochimica Acta 61 (1997) 1653–1670.
[20] Nesbitt H. W., "Mobility and fractionation of rare earth elements during weathering of a granodiorite", Nature 279 (1979) 206–210.
[21] Grant J. A., "The isocon diagram; a simple solution to Gresen’s equation for metasomatic alteration ", Economic Geology 81 (1986) 1976–1982.
[22] Arslan M., Kadir, S., Abdioglu E., Kolayli H., "Origin and formation of kaolin minerals in saprolite of Tertiary alkaline volcanic rocks, Eastern Pontides, NE Turkey", Clay Minerals 41 (2006) 597–617.
[23] Abedini A., Khosravi M., "Geochemical characteristics of rare earth elements in argillic alteration zone: An example from the Kharvana area, NW Iran", Jordan Journal of Earth and Environmental Sciences 15 (2014) 20–27.
[24] Mcdougall J., Lovering J. F., "Fractionation of chromium, nickel, cobalt and copper in a differntiated dolerite-granophyre sequence at Red Hill, Tasmania", Journal of Geological Society of Australia 10 (1963) 325–338.
[25] Jansson N. F., Liu W., "Controls on cobalt and nickel distribution in hydrothermal sulphide deposits in Bergslagen, Sweden-constraints from solubility modeling", Geologiska Föreningens i Stockholm Förhandlingar 142 (2020) 87–95.
[26] Jiang S.Y., "Controls on the mobility of high field strength elements (HFSE), U, and Th in an ancient submarine hydrothermal system of the Proterozoic Sullivan Pb-Zn-Ag deposit, British Columbia, Canada", Geochemical Journal 34 (2000) 341–348.
[28] Salvi S., Fontan F., Monchoux P., Williams-Jones A., Eand Moine B., "Hydrothermal mobilization of high field strength elements in alkaline igneous systems: Evidence from the Tamazeght Complex (Morocco)", Economic Geology 95 (2000) 559–576.
[30] Rubin J. N., Henry C. D., Price J. G., "The mobility of zirconium and other “immobile” elements during hydrothermal alteration", Chemical Geology 110 (1993) 29-47.
[31] Douville E., Bienvenu P., Charlou J. L., "Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems", Geochimica et Cosmochimica Acta 63 (1999) 627–643.
[33] Khashgerel B. E., Kavalieris I., Hayashi, K., "Mineralogy, textures, and whole-rock geochemistry of advanced argillic alteration: Hugo Dummett porphyry Cu–Au deposit, Oyu Tolgoi mineral district, Mongolia", Mineralium Deposita 43 (2008) 913–932.
[34] Ndjigui P. D., Bilong P., Bitom D., Dia, A., "Mobilization and redistribution of major and trace elements in two weathering profiles developed on serpentinites in the Lomié ultramafic complex, Southeast Cameroon", Journal of African Earth Sciences 50 (2008) 305–328.
[35] Meinhold G., "Rutile and its applications in earth sciences", Earth-Science Reviews 102 (2010) 1–28.
[36] Boyle R. W., Jonasson I. R., "The geochemistry of antimony and its use as an indicator element in geochemical prospecting", Journal of Geochemical Exploration 20 (1984) 223–302.
[37] Hikov A., "Geochemistry of hydrothermally altered rocks from the Asarel porphyry copper deposit, Central Srednogorie", Geologica Balcanica 42 (2013) 3–28.
[38] Carlile J. C., Davey G. R., Kadir I., Langmead R. P., Rafferty W. J., "Discovery and exploration of the Gosowong epithermal gold deposit, Halmahera, Indonesia", Journal of Geochemical Exploration 60 (1998) 207–227.
[39] White N. C., Hedenquist J. W., "Epithermal gold deposits: Styles, characteristics and exploration", SEG Discovery 23 (1995) 9–13.
[40] Alfieris D., Voudouris P., Spry P. G., "Shallow submarine epithermal Pb–Zn–Cu–Au–Ag–Te mineralization on western Milos Island, Aegean Volcanic Arc, Greece: Mineralogical, geological and geochemical constraints", Ore Geology Reviews 53 (2013) 159–180.
[41] Michard A., "Rare earth element systematics in hydrothermal fluids", Geochimica et Cosmochimica Acta 53 (1989) 745–750.
[42] Lottermoser B., "Rare earth elements and hydrothermal ore formation processes", Ore Geology Reviews 7 (1992) 25–41.
[43] Hikov A., "Aluminium phosphate-sulphate minerals in advanced argillic alteration zones in Petelovo and Pesovets deposits, Central Srednogorie", Comptes Rendus de l’Academie bulgare des Sciences 57 (2004) 61–68.
[44] Chang Z., Hedenquist J., White N., Cooke D., Roach M., Deyell C., Garcia J., Bruce Gemmell J., McKnight S., Cuison A., "Exploration tools for linked porphyry and epithermal deposits: Example from the Mankayan intrusion-centered Cu-Au district, Luzon, Philippines", Economic Geology 106 (2011) 1365–1398.
[45]
Abdioğlu E., Arslan M., Kadir S., Temozel I., "
Alteration mineralogy, lithochemistry and stable isotope geochemistry of the Murgul (Artvin, NE Turkey) volcanic hosted massive sulfide deposit: Implications for the alteration age and ore forming fluids",
Ore Geology Reviews 66 (2015) 219–242.
[46] Kikawada Y., Uruga, M., Oi T., Honda T., "Mobility of lanthanides accompanying the formation of alunite group minerals", Journal of Radioanalytical and Nuclear Chemistry 261 (2004) 651–659.
[47] Arribas A., Cunningham C., Rytuba J., Rye R., Kelly W., Podwysocki M., McKee E., Tosdal R., "Geology, geochronology, fluid inclusion, and isotope geochemistry of the Rodalquilar gold alunite deposit, Spain", Economic Geology 90 (1995) 795–822.
[48] Pirajno F., "Volcanic-hosted epithermal systems in northwest Turkey", South African Journal of Geology 98 (1995) 13–24.
[49] Hikov A., Lerouge, C., Velinova, N., "Geochemistry of alunite group minerals in advanced argillic altered rocks from the Asarel porphyry copper deposit, Central Srednogorie", Review of the Bulgarian Geological Society 71 (2010) 133–148.
[50] Hedenquist J., Matsuhisa Y., Izawa E., White N., Giggenbach W., Aoki M., "Geology, geochemistry, and origin of high sulphidation Cu-Au mineralization in the Nansatsu District, Japan", Economic Geology 89 (1994) 1–30.
[51] Deyell C., Rye R., Landis G., Bissig T., "Alunite and the role of magmatic fluids in the Tambo high-sulfidation deposit, El Indio–Pascua belt, Chile", Chemical Geology 215 (2005) 185–218.
[52] Stoffregen R., Alpers C., "Svanbergite and woodhouseite in hydrothermal ore diposits: Implications for apatite destruction during advanced argillic alteration", Canadian Mineralogist 25 (1987) 201–212.
[53] Olade M., Fletcher W., "Primary dispersion of rubidium and strontium around porphyry copper deposits, Highland Valley, British Columbia", Economic Geology 70 (1975) 15–21.