Petrography, Mineralogy, Geochemistry and growth pattern of glauconite in Miocene deposits in the Gashor section, Sanandaj - Sirjan Zone (SW of Harsin)

Document Type : Original Article

Authors

1 Faculty of Basic Sciences, Department of Geology, Payame Noor University, Tehran, Iran

2 Department of Geology, Faculty of Science, Gonabad Higher Education Complex, Gonabad, Iran

Abstract

Miocene-aged carbonate sequence in Geshur village section which located in one kilometer to southwest of Harsin, Kermanshah province, is composed of glauconite limestone, glauconite marl, and interlayers of shale. Glauconite mineral is present in all rock facies of this sequence. The abundance of glauconite ranges from 5 to 45% and according to the degree of maturity, they have been observed from slightly evolved with pale green color to highly evolved with very rich green color in thin sections.  Featured such as unselected replacement, the presence of highly evolved glauconite pellets, scattered pieces of glauconite in the form of green halo in matrix, weak sorting with phosphate and wrinkled glauconites are some of the most important evidences in the deposition of autochthonous glauconite under the suitable physico-chemical conditions which rqeplacement with carbonate  matrix and fossil shells. In the studied samples, the SEM results of glauconite minerals is compatible with the results of petrographic studies. Moreover, the semi-quantitative analysis on glauconite minerals using EDS SEM on FeO and K2O concentrations indicate a positive linear relationship between the FeO and K2O concentrations. The concentrations of most samples are lower than the values of the threshold (K2O < 8%) (Fe2O3 < 7%), which is consistent with the petrographic evidence for autochthonous glauconites.
 

[1] Allen P.A., Allen J.R., "Basin Analysis: Principles and Application to Petroleum Play Assessment", Wiely Blackwell (2013) 655 p.
[2] Miall A.D., "The Geology of Stratigraphic Sequences (2 nd Edition) ", Springer- verlag (2010) 522 p.
[3] Odin G.S., Fullagar P.D., "Geological significance of the glaucony facies, In: Odin, G.S. (Ed.), Green Marine ClaysDevelopments in Sedimentology", Elsevier Amsterdam 45 (1988) 295–332.
[4] Amorosi A., Guidi R., Mas R., Falanga E., "Glaucony from the Cretaceous of the Sierra de Guadarrama (Central Spain) and its application in a sequence-stratigraphic context", International Journal of Earth Science 101 (2011) 415-427.
[5] Amorosia A., Sammartinoa I., Tateo F., "Evolution patterns of glaucony maturity: A mineralogical and geochemical approach", Deep-Sea Research II 54 (2007) 1364- 1374.
 [6] Chang S.S., Shau Y.H., Wang M.K., Ku C.T., Chiang P.N.,  "Mineralogy and occurrence of glauconite in central Taiwan", Applied Clay Science 42 (2008) 74-80.
[7] Chattoraj S.L., Banerjee S., Saraswati P.K., "Glauconites from the Late Palaeocene-Early Eocene Naredi Formation, western Kutch and their geneticimplications", Journal of the Geological Society of India 73 (2009) 567-574.
[8] Banerjee S., Chattoraj S.L., Saraswati P.K., Dasgupta S., Sarkar U., "Substrate control on formation and maturation of glauconites in the Middle Eocene Harudi Formation, western Kutch, India", Marine and Petroleum Geology 30 (2012) 144-160.
[9] Banerjee S., Farouk S., Nagm E., Choudhury T.R., Meena S., "High Mg-glauconite in the Campanian Duwi formation of Abu Tartur Plateau, Egypt and its implications". Journal of African Earth Sciences, 56 (2019) 12–25.
[10] Bansal U., Banerjee S., Pande K., Ruidas D.K., "Unusual seawater composition of the Late Cretaceous Tethys imprinted in glauconite of Narmada basin, central India", Geological Magazine 157(2) (2020) 233–247. https://doi.org/10.1017/s0016756819000621.
[11] Rafiei M., Löhr S.C., Alard O., Baldermann A., Farkaš J., Brock G.A., "Microscale Petrographic, Trace Element, and Isotopic Constraints on Glauconite Diagenesis in Altered SedimentarySequences: Implications for Glauconite Geochronology", Geochemistry Geophysics Geosystems 24 (2023) e2022GC010795. https://doi.org/10.1029/2022GC010795.
[12] Redaa A., Farkaš J., Gilbert S., Collins A.S., Löhr S., Vasegh D., "Testing nano-powder and fused-glass mineral reference materials for in situ Rb-Sr dating of glauconite, phlogopite, biotite and feldspar via LA-ICP-MS/MS", Geostandards and Geoanalytical Research 47(1) (2022)  23–48. https://doi.org/10.1111/ggr.12467.
[13] Rafiei M., Lӧhr S.C., Baldermann A., Webster R., Kong C., "Quantitative petrographic differentiation of detrital vs diagenetic clay minerals in marine sedimentary sequences: Implications for the rise of biotic soils", Precambrian Research 350 (2020) 105948. https://doi. org/10.1016/j.precamres.2020.105948.
[14] Moser U., Scheiblhofer E., Wright N., Zack T., "Impact of green clay authigenesis on element sequestration in marine settings", Nature Communications 13 (2022) 1527.
[15] Aghanabati A., (2004) "Geology of Iran. Geological survey of Iran", Tehra, pp. 606.
[16] Berra F., Zanchi A., Mattei M., Nawab A., "Late Cretaceous transgression on a Cimmerian high (Neka Valley, Eastern Alborz, Iran): A geodynamic event recorded by glauconitic sands", Sedimentary Geology 199 (2007) 189–204.
[17] López-Quirós A., Escutia C., Sánchez-Navas A., Nieto F., Garcia-Casco A., Martín-Algarra A., "Glaucony authigenesis, maturity and alteration in the Weddell Sea: An indicator of paleoenvironmental conditions before the onset of Antarctic glaciation", Scientific Reports 9 (2019) 1–12. https://doi.org/10.1038/s41598-019-50107-1
[18] Baioumy H., Farouk S., Al-Kahtany K., "Paleogeographic, paleoclimatic and sea-level implications of glauconite deposits in Egypt: A review", Jouvnal of African Earth Science 171 (2020) 103944. https://doi.org/10.1016/j.jafrearsci.2020.103944.
 [19] Odin G.S., "Significance of green particles (glaucony, berthierine, chlorite) in arenites. In: G.G. Zuffa (Editor), Provenance of Arenites", Riedel Publication Dorodrecht, (1985) pp. 279-307.
[20] Burst J.F., "Glauconite pellets: Their mineral nature and application to stratigraphic interpretations", Bulletin of the American Association of Petroleum Geology 42 (1985) 310-327.
[21] Odin G.S., Matter A., "De glauconarium origin", Sedimentology 28 (1981) 611–641.
[22] López-Quirós A., Sánchez-Navas A., Nieto F., Escutia C., "New insights into the nature of glauconite. American Mineralogist", Journal of Earth and Planetary Materials 105(5) (2020) 674–686. https://doi.org/10.2138/am-2020-7341.
[23] Pasquini C., Lualdi A., Vercesi P., "Depositional dynamics of glaucony-rich deposits in the Lower Cretaceous of Nice arc, Southeast France", Cretaceous Research 25 (2004) 179–189.
[24] Scheiblhofer E., Moser U., Lӧhr S., Wilmsen M., Farkaš J., Gallhofer D., "Revisiting glauconite geochronology: Lessons learned from in situ radiometric dating of a glauconite-rich Cretaceous Shelfal sequence", Minerals 12(7) (2022) 818. https://doi.org/10.3390/min12070818.
 [25] Amorosi A., "Detecting compositional, spatial and temporal attributes of glaucony: A tool for provenance research", Sedimentary Geology (1997) 135–153.
[26] Huggett J., Adetunji J., Longstaffe F., Wray D., "Mineralogical and geochemical character isation of warm-water, shallow-marine glauconyfrom the Tertiary of the London Basin", Clay Miner 52 (2017)  25–50.
[27] Huggett J.M., "Glauconites. In Encyclopedia of Geology", Elsevier Amsterdam 2nd edition (2021) 334–340.
 [28] Huggett J.M., Gale A.S., "Petrology and palaeoenvironmental significance of glaucony inthe Eocene succession at White cliff Bay, Hampshire Basin", Journal Geological Society of London 154: (1997) 897–912.
[29] Fischer H., "Glauconite formation: Discussion of the terms authigenic, perigenic, allogenic, and meta-allogenic", Eclogae Geologicae Helvetiae 83 (1990) 1-6.
 [30] Chudhuri A.K., Chanda S.K., Dasgupta A.S., "Protrozoicpeloids form South India: Their origin and significance", Journal of Sedimentary Research 64A (1994) 765-770.
[31] Harris L.C., Whiting B.M., "Sequence-stratigraphic significance of Miocene to Pliocene glauconite-rich layers, on- and offshore of the US Mid-Atlantic margin", Sedimentary Geology 34 (2000) 129-147.
[32] Kelly J.C., Webb J.A., "The genesis of glaucony in the Oligo–Miocene Torquay group, southeastern Australia: petrographic and geochemical evidence", Sedimentary Geology 125 (1999) 99–114.
 [33] El-ghali M.A.K., Mansurbeg H., Morad S., Al-Aasm I., Ramseyer K., "Distribution of diagenetic alterations in glaciogenic sandstones within a depositional facies and sequence stratigraphic framework: Evidence from the Upper Ordovician of the Murzuq Basin, SW Libya", Sedimentary Geology 190 (2009) 323-351.
[34] Wang D., Zhu X.K., Zhao N., Yan B., Li X.H., Shi F., Zhang F., "Timing of the termination of Sturtian glaciation: SIMS U-Pb zircon dating from South China", Journal of Asian Earth Sciences 177 (2019) 287–294. https://doi.org/10.1016/j.jseaes.2019.03.015
[35] Zhou C., Huyskens M.H., Lang X., Xiao S., Yin Q.Z., "Calibrating the terminations of Cryogenian global glaciations", Geology 47(3) (2019) 251–254. https://doi.org/10.1130/g45719.1
[36] Tribovillard N., Bout-Roumazeilles V., Abraham R., Ventalon S., Delattre M., Baudin F., "The contrasting origins of glauconite in the shallow marine environment highlight this mineral as a marker of paleoenvironmental conditions", Comptes Rendus Geoscience 355(S2) (2023) 1–16.
[37] Tribovillard N., Bout-Roumazeilles V., Delattre M., Ventalon S., Abraham R., Nzié O., "Syndepositional glauconite as a paleoenvironmen- tal proxy - the lower Cenomanian Chalk of Cap Blanc Nez (N-France)". Chemical Geology 584, (2021) 120508.
[38] Roy Choudhury T., Banerjee S., Khanolkar S., Saraswati P.K., Meena S.S., "Glauconite authigenesis during the onset of the Paleocene- Eocene Thermal Maximum: a case study from the Khuiala Formation in Jaisalmer Basin, India", Palaeogeography, Palaeoclimatology, Palaeoecology 571 (2021) 110388.
[39] Kalinina N., Maximov P., Boris Makarov B., Dasi E., Maxim Rudmin M., "Characterisation and Environmental Significance of Glauconite from Mining Waste of the Egorievsk Phosphorite Deposit", Minerals 13 (2023) 1228. https://doi.org/10.3390/min13091228.
[40] Tribovillard N., Bout-Roumazeilles V., Guillot F.,Baudin F., Deconinck J. F., Abraham R., Ventalon S., "A sedimentological oxymoron: highly evolved glauconite of earliest diagenetic origin", Géoscience — Sciences de la Planète 355 (2023) 157-173 https://doi.org/10.5802/crgeos.208.