Study of stable sulfur isotopes using fluid inclusions data to determine the sulfur origin of mineralizing fluids in the Sargaz volcanogenic massive sulfide deposit, northwest of Jiroft, southeast Iran

Authors

Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran

Abstract

 The Sargaz volcanogenic massive sulfide deposit is located in southeastern Iran, northwest of Jiroft County. The lithology of the area includes pillow basalts, andesites, pyroclastics, and flysch. The formation of block smokers in basaltic units with pillow formation has caused the mineralization of copper and zinc massive sulfides in the Sargaz deposit. The copper and zinc mineralization event in the Sargaz deposit is in the southeastern part of the Sanandaj-Sirjan structural zone, which has been formed in the form of massive and stringers. Pyrite is the main sulfide mineral in this deposit, with chalcopyrite, sphalerite, tennantite, and pyrrhotite minerals seen with it. Siliceous and chlorite alteration in the mineralization zones is one of the most important alterations observed in the host rock of mineralization. These alterations are temporally and spatially dependent on the mineralization zone. Using the average homogenization temperature of the fluid inclusions obtained from 89 fluid inclusion samples, the separation of the sulfur isotope of the fluid from the sulfur isotope in equilibrium with sulfide minerals was performed. The studies showed that the origin of the sulfur in the mineralizing hydrothermal fluid consists of metamorphic rocks, as well as magmatic sulfur. The study of trace and rare earth elements in the mineralizing zone indicates a negative anomaly in HFSE elements and a positive anomaly in LILE lithophile elements. The positive anomaly in lithophile elements can indicate the mixing of the ore-forming fluid with silicate rocks.

Keywords


[1] Alavi M., “Tectonics of the Zagros orogenic belt of Iran: new data and interpretation”, Technophysics, 229 (1994), 211-238. http://dx.doi.org/10.1016/0040-1951(94)90030-2.
[2] Almasi nia B., "Bio and sequence stratigraphy for Middle-Late Eocene sediments in Sanandaj-Sirjan zone with carbon and oxygen isotopes studies", Reaserches in earth sciences, 10 (2019), 138-159. https://doi.org/10.52547/esrj.10.4.138.
[3] Ghasemi A., Talbot C.J., “Anewtectonic scenario for the Sanandaj–Sirjan Zone (Iran)", Asian Earth Sci. 26 (2006), 683–693. https://doi.org/10.1016/j.jseaes.2005.01.003.
[4] Malekizadeh A., “Geochemistry and petrogenesis of granite batholith of Siah Kuh plutonic complex”, Unpublished MSc thesis, Shahid Bahonar University, Kerman, I.R. Iran, (1999),208.
[5] Shahabpour J., “Tectonic evolution of the orogenic belt in the region    located between Kerman and Neyriz”, Asian Earth Sci. 24 (2005), 405–417. https://doi.org/10.1016/j.jseaes.2003.11.007.
[6] Arvin M., Pan Y., Dargahi S., Malekizadeh A., Babaei A., “Petrochemistry of the Siah-Kuh granitoid stock southwest of Kerman, Iran: Implications for initiation of Neotethys subduction”, Asian Earth Sci, 30(2007), 474–489. https://DOI:10.1016/j.jseaes.2007.01.001.
[7] Badr zadeh Z., “Petrology, Geochemistry and Petrogenesis of Sargaz (northwest of Jiroft) Pillow lavas with special reference to associated Cu-Zn Mineralization of VMS type” Tarbiat Modares University, Master Thesis, (2009).
[8] Shahraki ghadimi A., “Esfandagheh geological map of 1.100000”, Geological and mineral exploration Survey of Iran, (2004).
[9] Asadi A., Ghasemi H., Mobasheri M., “Olivine chemistry as a petrogenetic indicator for origin and formation conditions of Sargaz-Abshur ultramafic-mafic intrusion, SE Baft, Kerman”, Iranian Journal of Crystallography and Mineralogy, 31 (2023), 31-44. https://DOI:10.52547/ijcm.31.1.31.
[10] Bazilio A., Weinrich J.,”Inductively coupled Plasma mass spectrometry”, Duke university pub, (2012).
[11] Wilschefski S., “Inductively Coupled Plasma Mass Spectrometry: Introduction to Analytical Aspects”, Clinical biochemist. Reviews, (2019). https://DOI: 10.33176/AACB-19-00024
[12] Badrzadeh., “Mineralogy and geochemistry of hydrothermal alteration zones underlying the Sargaz Volcanic–Hosted Massive Sulfide Deposit, SE of Kerman”, Petrology journal. 48 (2022), 77-100. https://DOI: 10.22108/ijp.2022.132135.1262.
[13] Badrzadeh Z., Timothy J., Barrett M., Gimeno D., Sabzehei M., Aghazadeh M., “Geology, mineralogy, and sulfur isotope geochemistry of the Sargaz Cu–Zn volcanogenic massive sulfide deposit, Sanandaj–Sirjan Zone, Iran”, Miner Deposita journal. 46 (2011), 905–923.https://DOI:10.1007/s00126-011-0357-4.
[14] Mohajjel M., “Structure and tectonic evolution of Palaeozoic-Mesozoic rocks, Sanandaj-Sirjan Zone, western Iran”. Ph.D. thesis, University of Wollongong, Wollongong, Australia (unpublished), (1997).
[15] Franklin J.M., Gibson H.L., Jonasson I.R.,  Galley A.G., “Volcanogenic Massive Sulfide Deposits”, Economic Geology Publishing Company, (2005), 523-560. https://urlshort.app/OUTA6N
[16] Franklin J.M., “Volcanic-associated massive sulphide base metal: Geological Survey of Canada”, Geology of Canada, 8 (1995), 158–183. https://urlshort.app/U18RRZ
[17] Large R. R., Allen R. L., Blake M. D., Herrmann W., “Hydrothermal alteration and volatile element haloes for the Rosebery K Lens volcanichosted massive sulfide deposit, western Tasmania”, Economic Geology, 96 (2001), 1055-1072. . https://DOI:10.2113/gsecongeo.96.5.1055.
[18] Kerrich R., Wyman D.A., Fan J., Bleeker W., “Boninite series: low tholeiite associations from the 2.7-Ga Abitibi greenstone belt”. Earth Planet. Sci. Lett. 164 (1998), 303–316. https://doi.org/10.1016/S0012-821X(98)00223-4.
[19] Van Staal C.R., Fyffe L.R., Langton J.P.,  McCutcheon S.R, “The Ordovician Tetagouche Group, Bathurst Camp, northern New Brunswick, Canada; history, tectonic setting and distribution of massive-sulphide deposits”, Exploration and Mining Geology,4 (1995), 153-173.
[20] Vearncombe S.E., Kerrich R., “Geochemistry and geodynamic setting of volcanic and plutonic rocks associated with early Archean volcanogenic massive sulphide mineralization, Pilbara Craton”, Precambrian Research, 98 (1999), 243-270.
[21] Carvalho D., Barriga F.J.A.S., Munha J., “Bimodal siliciclastic systems: The case of the Iberian Pyrite Belt”, Reviews in Economic Geology, 8 (1999), 375–408.
[22] Piercey S.J., Paradis S., Murphy D.C., Mortensen J.K., “Geochemistry and paleotectonic setting of felsic volcanic rocks in the Finlayson Lake volcanic-hosted massive sulphide district, Yukon, Canada”, Economic Geology, 96 (2001),1877–1905.
[23] Hannington M.D., de Ronde C.E.J., Petersen S., “Sea-floor tectonics and submarine hydrothermal systems”, Economic Geology 100TH Anniversary Volume, (2005). https://DOI:10.5382/AV100.06.
[24] Groves D.I., Goldfarb R.J., Gebre-Mariam H., Hagemann S.G., Robert F., “Orogenic gold deposits - a proposed classification in the context of their crustal distribution and relationship to other gold deposit types”, Ore Geology Reviews, 13 (1998), 7-27. https://doi.org/10.1016/S0169-1368(97)00012-7.
[25] Allen R.L., Weihed P., Global VMS Research Project Team., Global comparisons of volcanic-associated massive sulphide districts, in Blundell, D.J., Neubauer, F., and Von Quadt, A., eds. “The Timing and Location of Major Ore Deposits in an Evolving Orogen”, Geological Society of London Special Publication 204 (2002), 13-37. https://DOI:10.1144/GSL.SP.2002.204.01.02.
[26] Michael P. J., Chase R. L., “The influence of primary magma composition, H2O and pressure on Mid-Ocean Ridge basalt differentiation”, Mineral Petrol, 96 (1987)245-263. https://urlshort.app/D9IP9A.
[27] Hergt J.M., Farley K. N., “Major element, trace element, and isotope (Pb, Sr, and Nd) variations in Site 834 basalts: implications for the initiation of backarc opening” College Station, TX (Ocean Drilling Program), (1994) 471–485.
[28] Sisson T. W., Grove T. L., “Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism”, Mineral. Petrol, 113(1993), 143–166. https://urlshort.app/EN0N9X.
[29] Whitney D., Evans B., “Abbreviations for Names of Rock-Forming Minerals”, American Mineralogist. 95 (2010), 185-187.  https://DOI:10.2138/am.2010.3371.
[30] Leitch C. H. B., “Mineralogy and textures of the Lahanos and Kizilkaya massive sulphide deposits, northeastern Turkey, and their similarity to Kuroko ores”, Mineralium Deposita, 16 (1981), 241-257.
[31] Tucker Barrie C., “Introduction: Classification of VMS deposits based on host rock composition”, CTBA Geoconsultants, (1999).
[32] Piercey S., Mattias Peter J., Herrington R. J., “Zn-rich Volcanogenic Massive Sulphide (VMS) Deposits”, Irish Association for Economic, (2015), 37-57. https://urlshort.app/MBJP0W
[33] Huston D., Laflamme C., Beaudion G., Piercey S., “Isotopes in Economic Geology, Metallogenesis and Exploration”, Mineral resource reviews, (2023), 245-282.
[34] Moleski N., Boxleiter A., Thakura L., “Sulfur Isotope Ratios from VMS Deposits in the Penokean Volcanic Belt, Great Lakes Region, USA: Constraints on the Source of Sulfur in a Paleoproterozoic Intra-Arc Rift”, Mineral Journal, (2018).   https://doi.org/10.3390/min9010006
[35] Rees C.E., Jenkins W.J., Monster J., “The sulfur isotopic composition of ocean water sulfate”, Geochim. Cosmochim. Acta 42, (1978), 377–381.
[36] Chambers L.A., Trudinger P.A., “Microbiological fractionation of stable sulfur isotopes: A review and critique”, Geomicrobiol. J., 1(1979), 249–293.
[37] Shanks W.C., “Stable isotopes in seafloor hydrothermal systems: Vent fluids, hydrothermal deposits, hydrothermal alteration, and microbial processes”, Rev. Mineral. Geochem, 43 (2001), 469–517. https://DOI:10.1016/B978-0-08-095975-7.01103-7.
[38] Neil J.R., Chappell B.W., “Oxygen and hydrogen isotope relations in the Berridale Batholith.”, J Geol Soc Lond, (1977) 133-559. https://doi.org/10.1144/gsjgs.133.6.0559.
[39] Li Y.B., Liu J.M., “Calculation of sulfur isotope fractionation in sulfides”, Geochimica et Cosmochimica Acta 70 (2006), 1789 – 1795. https://DOI:10.1016/j.gca.2005.12.015.
[40] Maanijou M., Ferdowsi Rashed M., “Fluid inclusions and sulfur stable isotopes of the Sarab 3 iron ore deposit (the Shahrak mining area - north Bijar)”, Journal of Economic Geology, 12 (2021), 531-561. https://DOI:10.22067/econg.v12i4.78330.
[41] Esmaeli M., Lotfi M., Nezafati N., “Mineralogy and genesis of Khalyfehlou copper deposit based on host rock geochemical data and O - S isotope characteristics”, Geoscienses journal, 28 (2019), 33-46. https://doi.org/10.22071/gsj.2019.84248.
[42] Nielsen H., “Sulfur isotopes in: Jager E, Hunziker J. (eds) lectures in isotope geology”, Springer, Berlin Heidelberg, New York, (1979), 283-312.
[43] Kamp L. R., “Alternative Modeling approaches to the Geochemical cycles of Carbon, Sulfur and Strontium isotopes”, Am J. Sci, 289 (1989), 390-410.
[44] Huston D.L., Pehrsson S., Eglington B.M., Zaw K., “The geology and metallogeny of volcanic-hosted massive sulfide deposits: Variations through geologic time and with tectonic setting”, Econ. Geol, 105 (2010), 571–591. https://DOI:10.2113/gsecongeo.105.3.571.
[45] Damchin mashak S., Torkian A., Furman T., “Mineral chemistry and P-T estimation of coexisting minerals in the andesitic rocks from the N-Saqqez, NW Iran”,  Iranian Journal of Crystallography and Mineralogy, 32 (2024), 339-358. https://DOI:10.61186/ijcm.32.2.339.
[46] Shepherd T.J., Rankin A.H., Alderton D.H.M., "A Practical guide to fluid inclusion studies", New York (1985) 239.
[47] Qishlaqi A., Moore F., “Recognition of pinavand Flourite mines Ooccurence based on geothermometry and REE data”, Iranian Journal of Crystallography and Mineralogy, 2 (2006), 325-338. http://ijcm.ir/article-1-680-en.html.
[48] Karakaya N., "REE and HFS element behaviour in the alteration facies of the Erenler Dağı Volcanics (Konya, Turkey) and kaolinite occurrence", Journal of Geochemical Exploration 101 (2009) 185 -208.
[49] Lackschewits K. S., Botz R., Garbe - S chِnberg D., Stoffers P., "Mineralogy and geochemistry of clay minerals near a hydrothermal site in the Escanaba trough, Gorda Ridge, northeast Pacific Ocean", In: Zierenberg R. A., Fouquet Y., Miller D. J., Normark W.R., (eds), Proceeding of the Ocean Drilling Program. Scietific Results, 169 (2000) 1 -24. https://urlshort.app/EKNGUB
[50] Cann J. R., “Spilites from the Carsberg ridge “, Indian ocean. J Petrol, 10 (1969).  
[51] Sun S.S., McDonough W. F., “Chmical and isotopic systematic of oceanic basalts: implications for mantle composition and processes”, in: Saunders A.D., Norry M. J. (eds.) “Magmatic in ocean basins”, Geological Society Special Publication London 42 (1989) 313-345.