زمین شیمی ایزوتوپ اکسیژن و میانبارهای سیال در کانسار مس و روی سرگز، شمال غرب جیرفت، جنوب شرق ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده علوم زمین، دانشگاه شهید بهشتی تهران

چکیده

کانسار مس و روی سولفید توده­ای سرگز در 30 کیلومتری هوایی شمال­غرب شهرستان جیرفت و جنوب شرق ایران قرار دارد.  بازالت­های بالشی با سن تریاس پسین-ژوراسیک پیشین میزبان کانه­زایی مس و روی سولفید توده­ای هستند. این کانسار در پهنه ساختاری سنندج-سیرجان واقع است. در این منطقه، پهنه سولفید توده­ای در مرز ژاسپر و بازالت قرار دارد، به طوری که از سطح به عمق، به ترتیب نخست واحد فلیشی و سپس آندزیت، آذرآواری، ژاسپر، سولفید توده­ای، رگه - رگچه برشی شده، رگه - رگچه بدون کانه­زایی و بازالت دیده می­شود. کانه­زایی همراه با دگرسانی سیلیسی-کلریتی است. این دگرسانی­ها از نظر مکانی وابسته به کانه­زایی هستند. در این پژوهش، خاستگاه سیال­های کانسارساز به همراه شوری، عمق به دام افتادن و فشار محیط تشکیل کانسار بررسی شده است. بررسی میانبارهای سیال نشان داد که سیال گرمابی مولد کانه­زایی شامل آب­های اقیانوسی و دگرگونی است. مقادیر ایزوتوپ اکسیژن سیال محاسبه شده بین 2/1- تا 36/13- در هزار بوده که نشان­دهنده آمیختگی چند سیال با خاستگاه­های متفاوت (آب جوی و آب اقیانوسی) است. از این رو، کانسار سرگز از سیال­هایی با ماهیت جوی، اقیانوسی، حوضه­ای و دگرگونی تشکیل شده است. بررسی میانبارهای سیال نشان داد که سیال­های کانه­زا در عمق کم و فشار پایین باعث تشکیل کانسار مس و روی سرگز شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Oxygen isotope geochemistry and fluid inclusions in Sargaz copper and zinc deposit, northwest of Jiroft, southeast of Iran

نویسندگان [English]

  • Hamid Rostamipour
  • Mehrdad Behzadi
Faculty of Earth Sciences, Shahid Beheshti University, Tehran
چکیده [English]

The copper and zinc sulfide deposit of Sargaz is located about 30 km northwest of Jiroft City, southeast Iran. Upper Triassic to Lower Jurassic pillow basalts host massive copper and zinc sulfide mineralization. This area is located in the structural zone of Sanandaj-Sirjan. In this area, there is a massive sulfide zone at the border of jasper and basalt, so that from the surface to the depth, flysch unit and andesite, pyroclastic, jasper, massive sulfide, sheared stringer, non-mineralized stringer and basalt can be seen. Mineralization is accompanied by siliceous-chlorite alteration. These alterations are spatially related to mineralization. In this research, the origin of ore-forming fluids along with salinity, trapping depth and pressure of the deposit formation environment have been investigated. The study of fluid inclusions showed that the hydrothermal fluid that produces mineralization consists of ocean water and metamorphism. The calculated oxygen isotope values ​​range from -1.2 to -13.36 per thousand, which indicates the mixing of several fluids with different origins (atmospheric water and oceanic water), so the Sargaz deposit is composed of atmospheric, oceanic, and basinal fluids and transformation is formed. The study of fluid inclusions showed that ore-forming fluids at shallow depth with low pressure caused the formation of Sargaz copper and zinc deposit.

کلیدواژه‌ها [English]

  • geochemistry
  • oxygen isotope
  • fluid inclusions
  • Sargaz
  • Jiroft
[1] Allen R. L., Weihed P., Blundell D., Crawford T., Davidson G., Galley A., Gibson H., Hannington M., Herzig P., Large R., Lentz D., Maslennikov V., McCutcheon S., Peter J. M., Tornos F., "Global comparisons of volcanic-hosted massive sulphide districts. In: Blundell, D. J., Neubauer, F. and Von Quadt, A. (editors), The timing and location of major ore deposits in an evolving orogen", Iran. Geological Society, London, Special Publications, 204 (2002), 13-37.  https://doi.org/10.1007/s00126-012-0407-6
[2] Hannington M.D., Jonasson I.R., Herzig P.M., Petersen S., “Physical and chemical processes of seafloor mineralization at midocean ridges, in Humphris, S.E., Zierenberg, R.A., Mullineaux, L.S., and Thomson, R.E., eds., Seafloor hydrothermal systems: Physical, chemical, biological and geological interactions: Geophysical Monograph”, American Geophysical Union, 91 (1995), 115–157.
[3] Rona P.A., Scott S.D., “A special issue on sea-floor hydrothermal mineralization: New perspectives–Preface”, Economic Geology, 88 (1993), 1933–1976.
 https://doi.org/10.2113/gsecongeo.88.8.1935
[4] Badrzadeh Z., Timothy J., Barrett M., Gimeno D., Sabzehei M., Aghazadeh M., “Geology, mineralogy, and sulfur isotope geochemistry of the Sargaz Cu–Zn volcanogenic massive sulfide deposit, Sanandaj–Sirjan Zone”, Iran. Miner Deposita journal. 46 (2011), 905–923. http://dx.doi.org/10.1007/s00126-011-0357-4
[5] Badrzadeh Z., Sabzehei M., Rastad E., Emami E. H., Gimeno D., “Varous stages of Sulfide mineralization in Sargaz volcanogenic massive sulfide deposit, Northwest Jiroft, Soudern Sanandaj-Sirjan” , Iran.Geosciences. 19 (2010), 71-78. https://doi.org/10.22071/gsj.2018.55653.
[6] Badrzadeh Z., “petrology, geochemistry and petrogenesis of pillow lavas in Sargez region (north west of Jiroft) with a special view on copper ore and massive zinc (VMS) associated with them”, Iran. PhD thesis, Tarbiat Modares University, (2009) 139.
[7] Mosera M.R., Rankin H.A., Milledge, “Hydrocarbon-bearing fluid inclusions in fluorite associated with the Windy Knoll bitumen deposit, UK”, Geochimica et Cosmochimica Acta 56 (1992), 155-168. https://doi.org/10.1016/0016-7037(92)90123-Z
[8] Haynes F.M., “Determination of fluid inclusion compositions by sequential freezing”. Economic Geology 80 (1985), 1436–1439. https://doi.org/10.2113/gsecongeo.80.5.1436
[9] Mohajjel M., Fergusson C. L., "Dextral transpression in Late Cretaceous continental collision, Sanandaj–Sirjan Zone, Western Iran", Iran. Journal of Structural Geology. 22 (2000), 1125–1139. https://doi.org/10.1016/S0191-8141(00)00023-7
[10] Soleimani M., Faghih A., Bagherpour B., Adibinejad M., Sobhani S., “Deformation microthermometry in the Toutak gneiss dome based on petrofabric characteristics of quartz crystal, Sanandaj-Sirjan metamorphic belt”, Iran. Advanced applied geology Journal. 14 (2024), 106-121. https://doi.org/10.22055/aag.2023.43423.2360.
[11] Aghanabati A., “Geology of Iran”. Geological and mineral exploration organization of Iran, (2004).
[12] Sheikholeslami M.R, “Tectonostratigraphic units of southeastern part of Sanandaj-Sirjan zone” , Iran. geosciences, 95 (2015), 243-252. https://doi.org/10.22071/gsj.2015.42068
[13] Ghasemi A., Talbot C. J. “A new tectonic scenario for the Sanandaj–Sirjan Zone (Iran). Journal of Asian”, geosciences26 (2006), 683–693.  https://doi.org/10.1016/j.jseaes.2005.01.003.
[14] Mohajjel M., Fergusson C. L., Sahandi M. R., “Cretaceous– Tertiary convergence and continental collision, Sanandaj–Sirjan zone, Western Iran”, Iran. Journal of Asian Earth Sciences, 21 (2003), 397–412. https://doi.org/10.1016/S1367-9120(02)00035-4.
[15] Badrzadeh Z., “Mineralogy and geochemistry of hydrothermal alteration zones underlying the Sargaz Volcanic–Hosted Massive Sulfide Deposit, SE of Kerman”, Iran. Petrology journal. 48 (2022), 77-100. https://dx.doi.org/10.22108/ijp.2022.132135.1262.
[16] Babakhani A., "Geological map of Sabzevaran (scale 1: 250.000)", Iran. Geology survey of Iran, (1992).
[17] Michael P. J., Chase R. L., “The influence of primary magma composition, H2O and pressure on Mid-Ocean Ridge basalt differentiation”, Mineral Petrol, 96 (1987), 245-263. https://doi.org/10.1007/BF00375237.
[18] Whitney D., Evans B., “Abbreviations for Names of Rock-Forming Minerals”. American Mineralogist. 95 (2010), 185-187. https://doi.org/10.2138/am.2010.3371
[19] Huang D. Z., Wang X. Y., Yang X. Y., Li G. M., Huang S. Q., Liu Z., Peng Z. H., Qiu R. L., "Geochemistry of gold deposits in the Zhangbaling tectonic belt, Anhui province, China", International Geology Review. 53 (2011),612–634. http://DOI: 10.1080/00206814.2010.496225.
[20] Sharp Z.D., Gibbons J.A., Maltsev O., Atudorei V., Pack A., Sengupta S., Shock E.L., Knauth L.P., "A calibration of the triple oxygen isotope fractionation in the SiO2–H2O system and applications to natural samples”, Geochimica et Cosmochimica Acta 186 (2016),105-119. http://DOI: 10.1016/j.gca.2016.04.047.
[21] Shahraki ghadimi A., “Esfandagheh geological map of 1.100000”, Iran. Geological and mineral exploration Survey of Iran, (2004).
[22] Esmaeli M., Lotfi N., Nezafati N., “Mineralogy, and genesis of Khalyfehlou copper deposit based on host rock geochemical data and O-S isotope characteristics” , Iran. Geosciences, 28 (2019), 33-46.
[23] Hoefs J., “Stable Isotope Geochemistry”, 4th edn. Springer-Verlag, Berlin, (1997), 68. https://link.springer.com/content/pdf/10.1007/978-3-540-70708-0.pdf.
[24] Sabahi F., Lotfi M., Afzali P., Nezafati N., "Mineralization, Fluid inclusion and Sulfur stable isotope studies in the Gardane-shir Pb-n deposit, Ardestan, Isfahan province", Iran.Journal of Earth Sciences. 119 (2021), 177-186.  https://doi.org/10.22071/gsj.2018.115540.1377.
[25] Rahimi cheshmegachi H., Yazdi M., Gholizadeh K., “Mineralogy, Geochemistry, fluid inclusions of Karat iron Skarn deposit, Sangan, NE of Iran”, Iran. Iranian Journal of Crystallography and Mineralogy, 32 (2024), http://ijcm.ir/article-1-1862-fa.html
[26] Goldstein R.H., “Petrographic Analysis of Fluid Inclusions. In: Samson, I. Anderson, A. Marshall D. (Ed.), Fluid inclusions: Analysis and interpretation”, Mineralogical Association of Canada, Short Course Handbook, 32 (2003), 9-53.
[27] Malekzadeh Shafaroudi A., Karimpour M. H., Javidi Moghaddam M., Alteration, mineralization, geochemistry and fluid inclusion studies in Chah Noghreh Pb-Zn deposit, NW Birjand, Lut Block”, Iran. Advanced Applied Geology. 11 (2021), 298-317. https://doi.org/10.22055/aag.2020.32440.2088.
[28] Cruz Perez M., Canet C., Franco S., Camprubi A., González Partida E., Rajabi A., “Boiling and depth calculations in active and fossil hydrothermal systems: A comparative approach based on fluid inclusion case studies from Mexico”, Ore Geology Reviews Journal. 72 (2016), 603-611. https://doi.org/10.1016/j.oregeorev.2015.08.016.
[29] Jamieson J.W., Hannington M.D., Petersen S., Tivey M.K., “Volcanogenic Massive Sulfides”. In: Harff, J., Meschede, M., Petersen, S., Thiede, J. (eds) Encyclopedia of Marine Geosciences. Springer, Dordrecht, (2014).
https://doi.org/10.1007/978-94-007-6644-0_37-1
[30] Haas J.L., “The effect of salinity on the maximum thermal gradient of a hydrothermal system at hydrostatic pressure”. Economic Geology Journal.66 (1971), 940– 946. https://doi.org/10.2113/gsecongeo.66.6.940.
[31] Kesler S.E., “Ore-forming fluids”, Elements, 1 (2005), 13–18.
[32] Nam nabat e., Ghorbani M., Tabatabaei S.H., "Characteristics of the ore-forming fluid of the gold-bearing quartz vein system, based on the investigation of fluid samples, Anderian, North-West of Iran",Iran. Iranian Journal of Crystallography and Mineralogy. 27 (2019), 723-738.  https://doi.org/10.29252/ijcm.27.3.723.
[33] Roedder E., “Fluid inclusions, Reviews in Mineralogy”, Mineralogical Society of. America., Washington, (1984).
[34] Zhang Y.G., Frantz J.D., “Determination of the homogenization temperatures and densities of supercritical fluids in the system NaClKClCaCl2H2O using synthetic fluid inclusions”, Chemical Geology. 64 (1987), 335-350. https://doi.org/10.1016/0009-2541(87)90012-X