کانی‌شناسی و زمین‌شیمی سنگ‌های کربناتی میزبان کانسار سرب - روی نخلک، پهنه ایران مرکزی

نویسندگان

1 گروه زمین‌شناسی، دانشکده علوم، دانشگاه ارومیه، ارومیه، ایران

2 گروه مهندسی معدن، دانشگاه صنعتی ارومیه، ارومیه، ایران

چکیده

کانسار سرب - روی نخلک در 55 کیلومتری شمال‌شرق شهر انارک، استان اصفهان، در پهنه ایران مرکزی واقع است. این کانسار با سنگ­های کربناتی کرتاسه پسین میزبانی می­شود. بررسی­های کانی‌شناسی نشان می‌دهند که کلسیت و دولومیت در این سنگ‌های کربناتی با کانی‌هایی چون کوارتز، پلاژیوکلاز، کائولینیت، اسمکتیت، ایلیت و هماتیت همراهی می‌شوند. بر اساس مقادیر نسبت CaO/MgO (29/51-18/1)، سنگ­های کربناتی مورد بررسی از آهک دولومیتی و دولومیت کلسیتی تشکیل شده‌اند. مقادیر عناصر خاکی نادر (REE) در این سنگ‌ها در گستره 67/8 تا 30/21 گرم در تن متغیر بوده که بیشتر از مقادیر کربنات‌های دریایی (14-4/0 گرم در تن) است. الگوی توزیع REE بهنجار شده به شیل پس از آرکئن استرالیا PAAS))، تهی­شدگی عناصر خاکی نادر سبک (LREE) نسبت به عناصر خاکی نادر سنگین (HREE) و رخداد بی­هنجاری منفی Ce (89/0- 72/0 = Ce/Ce*) و بی‌هنجاری منفی تا مثبت Eu (68/1- 96/0 = Eu/Eu*) را در نمونه­های مورد بررسی نشان می­دهند. خاستگاه آواری لانتانیدها در سنگ‌های کربناتی مورد بررسی از همبستگی‌های مثبت بین LREE با Th، Yو Nb (86/0- 76/0 = r) و مثبت بین HREE با SiO2، Al2O3، TiO2، Ga، Th، Y، Nb، V و Cu (95/0- 60/0 = r) به همراه همبستگی‌های منفی بین CaO با LREE (32/0- = r) و HREE (77/0- = r) برداشت می­شود. تغییر در نسبت‌های زمین‌شیمیایی چون Y/Ho (14/47 - 16/23) و Er/Nd (28/0- 11/0) این تفسیر را تأیید می‌کنند. شواهد کانی‌شناسی و نتایج مطالعات زمین‌شیمیایی نشان می‌دهند که تغییرات بی‌هنجاری Ce و رخداد بی‌هنجاری مثبت Eu به ترتیب با مقدار ورود مواد آواری و حضور پلاژیوکلاز در سنگ‌های کربناتی مورد بررسی ارتباط دارند. ضرایب همبستگی بین REE با P2O5 و Ce/Ce*، Eu/Eu* با Ce/Ce*، Nb، Th، Y و Zr، همچنین Mn با Sr نشانگر اثر نداشتن فرآیندهای پس از نهشت در تغییر مقادیر لانتانیدها در سنگ‌های کربناتی مورد بررسی هستند.

کلیدواژه‌ها


عنوان مقاله [English]

Mineralogy and geochemistry of carbonate host rocks of the Nakhlak lead-zinc ore deposit, Central Iran Zone

نویسندگان [English]

  • Parastoo Golizadeh 1
  • Ali Abedini 1
  • Farhang Aliyari 2
1 Geology Department, Faculty of Sciences, Urmia University, Urmia, Iran
2 Department of Mining Engineering, Urmia University of Technology, Urmia, Iran
چکیده [English]

The Nakhlak lead-zinc deposit is located about 55 km northeast of Anark city, Isfahan Province, Central Iran Zone. This ore deposit is hosted by Upper Cretaceous carbonate rocks. Mineralogical studies show that calcite and dolomite in these carbonate rocks are accompanied by minerals such as quartz, plagioclase, kaolinite, smectite, illite and hematite. Based on the values ​​of CaO/MgO ratio (1.51-18.29), the studied carbonate rocks are composed of dolomitic limestone and calcitic dolomite. The contents of rare earth elements (REE) in the carbonate rocks ranged from 8.67 to 21.30 ppm, which is more than the range of marine carbonates (0.4-14 ppm). The distribution pattern of REE normalized to Post-Archean Australian Shale (PAAS) show depletion of LREE compared to HREE and occurrence of negative Ce anomaly (Ce/Ce* = 0.72-0.89) and negative to positive Eu anomaly (Eu/Eu*= 0.96-1.68) in the studied samples. The detrital origin of lanthanides in the studied carbonate rocks in the Nakhlak can be inferred from positive correlations between LREE with Th, Y and Nb
(r = 0.76-0.86) and positive correlations between HREE with SiO2, Al2O3, TiO2, Ga, Th, Y, Nb, V , and Cu (r = 0.60-0.95) along with negative correlations between CaO with LREE (r = -0.32) and HREE (r = -0.77). Changes in geochemical ratios such as Y/Ho (23.16-47.14) and Er/Nd (0.11-0.28) support this interpretation. Mineralogical evidence and geochemical studies show that the changes of Ce anomaly and the occurrence of positive Eu anomaly are related to the amounts of detrital materials and the presence of plagioclase in the studied carbonate rocks, respectively. The correlation coefficients between REE with P2O5 and Ce/Ce*, Eu/Eu* with Ce/Ce*, Nb, Th, Y, and Zr, also Mn with Sr indicate the lack of influence of post-depositional processes in changing the amounts of lanthanides in the studied carbonate rocks.

کلیدواژه‌ها [English]

  • mineralogy؛ geochemistry؛ carbonate host rocks؛ lead-zinc deposit؛ Nakhlak
  • Central Iran
  1. [1] Jazi M. A., Shahabpour J., "Investigating mineralogical, structural, textural and geochemical characteristics of Nakhlak lead mine, Isfahan", Iranian Journal of Economic Geology 2 (2010) 131–151.

    [2] Jazi M. A., Karimpour M. H., Malekzadeh Shafaroudi A., "Galena crystallography, mineralogy and geochemistry, Nakhlak lead deposit (Isfahan)", Iranian Journal of Crystallography and Mineralogy 24 (2016) 3–18.

    [3] Vaziri S. H., "Lithostratigraphy, biostratigraphy and sedimentary environments of Triassic rocks of the Nakhlak area in N.E. Anarak (Central Iran) and preparing geological map of the studied area with scale of 1:20.000", Islamic Azad University., Science and Research Branch, Tehran, Ph.D. thesis, (1996) 344p.

    [4] Vaziri S. H., Fursich F. T., Kohansal-Ghadimvand N., "Facies analysis and depositional environments of the Upper Cretaceous Sadr unit in the Nakhlak area, Central Iran", Revista Mexicanada Ciencias Geológicas 29 (2012) 384-397.

    [5] Vaziri S. H., Senowbari-Daryan B., Kohansal Ghadimvand N., "Lithofacies and microbiofacies of the Upper Cretaceous rocks (Sadr unit) of Nakhlak area in northeastern Nain, Central Iran", Journal of Geosciences 4 (2005) 71–80.

    [6] Nabavi M. H., "An Introduction to the Geology of Iran", Geological Survey of Iran Publication (1976) 1–105.

    [7] Seyed-Emami K., Brants A., Bozorgnia F., "Stratigraphy of the Cretaceous rocks south east of Esfahan", Geology Survey of Iran, Rep. No 20 (1971) 5–27.

    [8] Davoudzadeh M., Soffel H., Schmidt K., "On the rotation of Central-East-Iran microplate", Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 3 (1981)180–192.

    [9] Soffel H. C., Forster H. G., "Polar wander path of the central Iran microplate including new results, Geodynamic project (Geotraverse) in Iran", Geological Survey of Iran (Final Report), Rep. No. 51 (1983) 13–26.

    [10] Ruttenr A. W., "Geology of the Aghdarband area (kopet Dagh, NE-Iran)", Geologie Abhandlungen B.A. 38 (1991) 7–79.

    [11] Alavi M., Vaziri H., Seyed-Emami K., Lasemi Y., "The Triassic and associated rocks of the Nakhlak and Aghdarband areas in central and Northeastern Iran as remnants of the Southern Turanian continental margin", Geological Society of America Bulletin 109 (1997) 1563–1575.

    [12] Balini M., Nicora A., Berra F., Garzanti E., Levera M., Mattei M., Muttoni G., Zahchi A., Bollati I., Larghi C., Zanchetta S., Salamati R., Mossavvari F., "The Triassic stratigraphic succession of Nakhlak (Central Iran), a record from an active margin. South Caspian to Central Iran Basins", Geological Society of London, Specical Publications 312 (2009) 287–321.

    [13] Zanchi A., Zanchetta S., Garzanti E., Balini M., Berra F., Mattei M., Muttoni G., "The Cimmerian evolution of the Nakhlak-Anarak area (Central Iran) and its bearing for the reconstruction of the history of the Eurasian margin, South Caspian to Central Iran Basins", Geological Society of London, Specical Publications 312 (2009) 261–286.

    [14] Holzer H. F., Ghassemipour R., "Geology of the Nakhlak lead mine area (Anarak district, Central Iran)", Geological Survey of Iran (1969) 44 p.

    [15] Vaziri S. H., "The Triassic Nakhlak Group, an exotic succession in Central Iran", The fourth International Symposium on Eastern Mediterranean Geology, Isparta, Turkey (2001) 53–68.

    [16] Davoudzadeh M., Seyed-Emami K., Amidi S. M., "Stratigraphy of the Triassic Nakhlak Group, Anarak Region, Central Iran", Geological Survey of Iran, Rep. no. 28 (1972) 5–28, Tehran.

    [17] Vaziri S. H., Fursich F. T., Kohansalghadimvand N., "Facies analysis and depositional environments of the Upper Cretaceous Sadr unit in the Nakhlak area, Central Iran", Revista Mexicana de Ciencias Geológicas 29 (2012) 384–397.

    [18] Song C., Herong G., Linhua S., "Geochemical characteristics of REE in the Late Neo-Proterozoic limestone from northern Anhui Province, China", Chinese Journal of Geochemistry 33 (2014)187–193.

    [19] Nothdurft L. D., Webb G. E., Kamber B. S.,"Rare earth element geochemistry of Late Devonian reefal carbonates, Canning Basin, Western Australia: Confirmation of a seawater REE proxy in ancient limestones", Geochimica et Cosmochimica Acta 68 (2004) 263–283.

    [20] Veizer J., "Trace elements and isotopes in sedimentary carbonates", In: Reeder, R.J. (Ed.), Carbonates: Mineralogy and Chemistry, Mineralogical Society of America 11 (1983) 265–299.

    [21] Taylor S. R., McLennan S. M., "The continental crust: Its composition and evolution", Blackwell, Oxford, (1985) 349p.

    [22] Frolova E. K., "On classification of  carbonate rocks of limestone-dolomite-magnesite series: NovostiNeft ", Geology 3 (1959) 34–35.

    [23] Murray R. W., Buchholtz M. R., Brumsack H. J., "Rare earth elements in Japan Sea sediments and diagenetic behavior of Ce/Ce*, results from ODP leg 127", Geochimica et Cosmochimica Acta 55 (1991) 2453–2466.

    [24] Turekian K. K., Wedepohl K. H., "Distribution of elements in some major units of earth’s crust", Geological Society of American Bulletin 72 (1961) 175–192.

    [25] Nagarajan R., Madhavaraju J., Armstron-Altrin J. S., Nagendra R., "Geochemistry of Neoproterozoic limestones of the Shahabad Formation, Bhima Basin, Karnataka, southern India", Geoscience Journal 15 (2011) 9–25.

    [26] Madhavaraju J., Ramasamy S.,"Rare earth elements in limestones of Kallankurichchi Formation of Ariyalur Group, Tiruchirapalli Cretaceous, Tamil Nadu", Geological Society of India 54 (1999) 291–301.

    [27] Brand U., Veizer J., " Chemical diagenesis of a multicomponent carbonate system: I. Trace elements", Journal of Sedimentary Petrology 50 (1980) 1219–1236.

    [28] Bellanca A., Masetti D., Neri R., "Rare earth elements in limestone/marlstone couplets from the Albian–Cenomanian Cismon section (Venetian region, northern Italy): Assessing REE sensitivity to environmental changes", Chemical Geology 141 (1997) 141–152.

    [29] Elderfield H., Upstill-Goddard R., Sholkovitz E. R.,"The rare earth elements in rivers, estuaries and coastal seas and their significance to the composition of ocean waters", Geochimica et Cosmochimica Acta 54 (1990) 971–991.

    [30] Madhavaraju J., González-León C. M., Lee Y. I., Armstrong-Altrin J. S., Reyes-Campero L. M.,"Geochemistry of the Mural Formation (Aptian–Albian) of the Bisbee Group, Northern Sonora, Mexico", Cretaceous Research 31 (2010) 400–414.

    [31] Armstrong-Altrin J. S., Verma S. P., Madhavaraju J., Lee Y. I., Ramasamy S.,"Geochemistry of Late Miocene Kudankulam Limestones, South India", International Geology Review 45 (2003)16–26.

    [32] Alexander B. W., Bau M., Andersson P., Dulski P.,"Continentally derived solutes in shallow Archean seawater: Rare earth element and Nd isotope evidence in iron formation from the 2.9 Ga Pongola Supergroup. South Africa", Geochimica et Cosmochimica Acta 72 (2008) 378–394.

    [33] Bau M., "Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect", Contributions to Mineralogy and Petrology 123 (1996) 323–333.

    [34] Özyurt M., Kirmaci M. Z., Al-Aasm I., Hollis C., Tash K., Kandemir R., REE characteristics of lower cretaceous limestone succession in Gumushane, NE Turkey: Implications for ocean paleoredox conditions and diagenetic alteration", Minerals 10 (2020) 683.

    [35] Tobia F. H., "Stable isotope and rare earth element geochemistry of the Baluti carbonates (Upper Triassic), Northern Iraq", Geoscience Journal 22 (2018) 975–987.

    [36] Nozaki Y., Zhang J., Amakawa H., " The fractionation between Y and Ho in the marine environment", Earth and Planetary Science Letters 148 (1997) 329–340.

    [37] Webb G. E., Kamber B. S.,"Rare earth elements in Holocene reefal microbialites: A shallow seawater proxy", Geochimica et Cosmochimica Acta 64 (2000) 1557–1565.

    [38] De Baar H. J., German C. R., Elderfield H., Van Gaans P., "Rare earth element distributions in anoxic waters of the Cariaco Trench", Geochimica et Cosmochimica Acta 52 (1988) 1203–1219.

    [39] German C. R., Elderfield H., "Application of the Ce anomaly as a paleoredox indicator: the ground rules", Paleoceanography 5 (1990) 823–833.

    [40] Derry L. A., Jacobsen S. B., "The chemical evolution of Precambrian seawater: Evidence from REEs in banded iron formations", Geochimica et Cosmochimica Acta 54 (1990) 2965–2977.

    [41] Siby K., Nath B. N., Ramaswamy V., Naman D., Rao T., Raju K. K., Selvaraj K., Chen C. T. A., "Possible detrital, diagenetic and hydrothermal sources for Holocene sediments of the Andaman backarc basin", Marine Geology 247 (2008) 178–193.

    [42] Madhavaraju J., Lee Y. I., "Geochemistry of the Dalmiapuram Formation of the Uttatur Group (Early Cretaceous), Cauvery basin, southeastern India: Implications on provenance and paleo-redox conditions", Revista Mexicana de Ciencias Geologicas 26 (2009) 380–394.

    [43] Nath B. N., Bau M., Ramalingeswara R. B., Rao C. M., "Trace and rare earth elemental variation in Arabian Sea sediments through a transect across the oxygen minimum zone", Geochimica et Cosmochimica Acta 61 (1997) 2375–2388.

    [44] Elderfield H., Greaves M. J., "The rare earth elements in seawater", Nature 296 (1982) 214–219.

    [45] Hu M., Ngia N. R., Gao D., "Dolomitization and hydrotectonic model of burial dolomitization of the Furongian-lower Ordovician carbonates in the Tazhonhg Uplift, central Tarim Basin, NW China: Implications from petrography and geochemistry", Marine Petrolium Geology 106 (2019) 88–115.

    [46] Shields G. A., Webb G. E., "Has the REE composition of seawater changed over geologic time", Chemical Geology 204 (2004) 103–115.

    [47] Allwood A. C., Kamber B. S., Walter M. R., Burch I. W., Kanik I., "Trace elements record depositional history of an Early Archean stromatolitic carbonate platform", Chemical Geology 270 (2010) 148–163.

    [48] Piepgras D. J., Jacobsen S. B., "The behavior of rare earth elements in seawater: Precise determination of variations in the North Pacific water column", Geochimica et Cosmochimica Acta 56 (1992) 1851–1862.

    [49] Alibo D. S., Nozaki Y., "Rare earth elements in seawater: Particle association, shale-normalization, and Ce oxidation", Geochimica et Cosmochimica Acta 63 (1999) 363–372.

    [50] Bau M., Alexander B., "Preservation of primary REE patterns without Ce anomaly during dolomitization of Mid-Paleoproterozoic limestone and the potential re-establishment of marine anoxia immediately after the “Great Oxidation Event", South African Journal of Geology 109 (2006) 81–86.

    [51] Liu X. M., Hardisty D. S., Lyons T. W., Swart

    1. K., "Evaluating the fidelity of the cerium paleoredox tracer during variable carbonate diagenesis on the Great Bahamas Bank", Geochimica et Cosmochimica Acta 248 (2019) 25–42.

    [52] Shields G., Stille P., "Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: An isotopic and REE study of Cambrian phosphorites", Chemical Geology 175 (2001) 29–48.