Petrographic and chemical investigation of plagioclase, alkali feldspar, pyroxene and olivine minerals in gabbroic rocks of Robat – Shahr Babak region located in Kerman province, Iran

Document Type : Original Article

Authors

1 Shahid Bahonar University, Kerman, Iran

2 Universita Degli Studi Di Milano, Italy

Abstract

The studied area is located in the southeast of Sanandaj-Sirjan zone, 31 km southwest of Shahr-Babak city and in the north of granodiorite batholith of Shahr-Babak city. In this area, isolated masses of gabbro outcrop, which caused the evolution of the southeastern part of the Sanandaj-Sirjan zone 173 million years ago. Examples of this area include dunite, olivine gabbro, hornblende gabbro, troctolite and granodiorite. In these samples, there are anorthosite streaks, which are the result of fractionation process (especially volatile materials), injection of new magmas and flow. In the investigations obtained from mineral chemistry, plagioclases have a composition of andesine to labradorite and alkaline feldspars have a composition of orthoclase. Pyroxenes are in the range of clinopyroxene (diopside) and olivines are in the range of chrysolite.


 

Keywords


[1] Alavi, M., Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics, 229(3-4), (1994) 211-238.

[2] Fazlnia, M., Moradian, A., Rezaei, K., Moazen, M., & ALI, P. S., Synchronous activity of anorthositic and S-type granitic magmas in Chah-Dozdan batholith, Neyriz, Iran: evidence of zircon SHRIMP and monazite CHIME dating (2007).

[3] Berberian, M., & King, G. C. P., Towards a paleogeography and tectonic evolution of Iran. Canadian journal of earth sciences, 18(2), (1981) 210-265.

[4] Fathi, Behrouz. the investigation of petrology and mineral chemistry granite dykes in the Diorite intrusive body, Kangarah WS- Ghorveh (Kurdistan Province), (In Persian), The 23rd Conference of Crystallography and Mineralogy of Iran, Damghan University. (2016).

[5] Mohajjel, M., & Fergusson, C. L., Dextral transpression in Late Cretaceous continental collision, Sanandaj–Sirjan zone, western Iran. Journal of Structural geology, 22(8), (2000) 1125-1139.

[6] Mohajjel, M., Fergusson, C. L., & Sahandi, M. R., Cretaceous–Tertiary convergence and continental collision, Sanandaj–Sirjan zone, western Iran. Journal of Asian Earth Sciences, 21(4), (2003) 397-412.

[7] Nabavi, M. An introduction to the geology of Iran, (In Persian), (1977) 109.

[8] Stöcklin, J., Structural history and tectonics of Iran: a review. AAPG bulletin, 52(7), (1968) 1229-1258.

[9] Fazlnia, A., Partial melting of subducted clay xenoliths in Tale Pahlavani batholith, Shahr-Babak: the reasons for the formation of peraluminous granite intermediates, (In Persian), Science Journal of Shahid Chamran University, Number 23 (Part B), (2010) 61-78.

[10] Shahabpour, J. Tectonic evolution of the orogenic belt in the region located between Kerman and Neyriz. Journal of Asian Earth Sciences, 24(4), (2005) 405-417.

[11] Fazlnia, A., Schenk, V., Appel, P., & Alizade, A. Petrology, geochemistry, and geochronology of the Chah-Bazargan gabbroic intrusions in the south Sanandaj–Sirjan zone, Neyriz, Iran. International Journal of Earth Sciences, 102, (2013) 1403-1426.

[12] Fazlnia, A., Studying the batholith in the southwest of Shahrbabak and its relationship with the metamorphic rocks in the northeast of Neyriz. PhD thesis, (In Persian), Shahid Bahonar University of Kerman, Faculty of Science, (2007) P. 339.

[13] Alavi, M., Sedimentary and structural characteristics of the Paleo-Tethys remnants in northeastern Iran, Geological society of America Bulletin, 103, (1991) 983-992.

[14] Valeh, N., & Alavi Tehrani, N., Geological Survey of Iran. 1:250000 Neyriz Scale Map (1985).

[15] Shelley, D., Igneous and metamorphic rocks under the microscope: classification, textures, microstructures and mineral preferred-orientations. (No Title) (1993).

[16] Streckeisen, A. To each plutonic rock its proper name. Earth-science reviews, 12(1) (1976) 1-33.

[17] Bédard, J. H. Partitioning coefficients between olivine and silicate melts. Lithos, 83(3-4) (2005) 394-419.

[18] Best, M. & Christiansen, E. H. Igneous petrology. Blackwell Science (2001) 458 p.

[19] Deer, W. A., Howie, R. A., & Zussman, J., An introduction to the rock-forming minerals. Mineralogical Society of Great Britain and Ireland (2013) 510 p.

[20] Morimoto, N., Fabries, J., Ferguson, A. K., Ginzburg, I. V., Ross, M., Seifert, F. A., ... & Gottardi, G., Nomenclature of amphiboles. American Mineralogist, 73 (1988) 1123-1133.

[21] Zhao, J. H., & Zhou, M. F. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China): Implications for subduction-related metasomatism in the upper mantle. Precambrian research, 152(1-2), (2007) 27-47.

[22] Reichow, M. K., Saunders, A. D., White, R. V., Al'Mukhamedov, A. I., & Medvedev, A. Y. Geochemistry and petrogenesis of basalts from the West Siberian Basin: an extension of the Permo–Triassic Siberian Traps, Russia. Lithos, 79(3-4) (2005) 425-452.

[23] Khalil, K., Summers, P., & El-Shazly, A. Origin of the post-collisional younger gabbroic rocks and the associated Fe–Ti oxide ores, Abu Ghalaga area, Southern Eastern Desert, Egypt: mineralogical and geochemical constraints. Arabian Journal of Geosciences, 16(3) (2023) 160.

[24] Filipov, M., & de Assis Janasi, V. The Mauá granitic massif, Central Ribeira Belt, São Paulo: petrography geochemistry and U-Pb dating. Brazilian Journal of Geology, 31(3) (2008) 341-348.

[25] Hepworth, L. N., O’Driscoll, B., Gertisser, R., Daly, J. S., & Emeleus, C. H. Incremental construction of the unit 10 Peridotite, Rum eastern layered intrusion, NW Scotland. Journal of Petrology, 58(1) (2017) 137-166.

[26] Hepworth, L. N., Kaufmann, F. E., Hecht, L., Gertisser, R., & O’Driscoll, B. Braided peridotite sills and metasomatism in the Rum Layered Suite, Scotland. Contributions to Mineralogy and Petrology, 175 (2020) 1-25.

[27] Philpotts, A. R. A model for the generation of massif-type anorthosites. Canadian Mineralogist, 19(2) (1981) 233-253.

[28] Green, T. H. High-pressure experimental studies on the origin of anorthosite. Canadian Journal of Earth Sciences, 6(3) (1969) 427-440.

[29] Simmons, E. C., & Hanson, G. N. Geochemistry and origin of massif-type anorthosites. Contributions to Mineralogy and Petrology, 66 (1978) 119-135.

[30] Fazlnia, A., Schenk, V., van der Straaten, F., & Mirmohammadi, M. Petrology, geochemistry, and geochronology of trondhjemites from the Qori Complex, Neyriz, Iran. Lithos, 112(3-4), (2009) 413-433.

[31] Campbell, K., Ghazi, A. M., LaTour, T., & Hassanipak, A. A. Geochemistry, petrology and tectonics of the Shahr-Babak ophiolite, SE Iran. Geol. Soc. Am., SE Sect. Abstr. Progr, 31(9), (1999) 485-497.

[32] Ghazi, A. M., Pessagno, E. A., Hassanipak, A. A., Kariminia, S. M., Duncan, R. A., & Babaie, H. A. Biostratigraphic zonation and 40Ar–39Ar ages for the Neotethyan Khoy ophiolite of NW Iran. Palaeogeography, Palaeoclimatology, Palaeoecology, 193(2) (2003) 311-323.

[33] Ghazi, A. M., Hassanipak, A. A., Mahoney, J. J., & Duncan, R. A. Geochemical characteristics, 40Ar–39Ar ages and original tectonic setting of the Band-e-Zeyarat/Dar Anar ophiolite, Makran accretionary prism, SE Iran. Tectonophysics, 393(1-4) (2004) 175-196.