مقایسه ویژگی‌های ساختاری و مغناطیسی نانوذرات FeNi3 ساخته شده به روش‌های گرمابی و هم‌رسوبی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه شهید چمران اهواز

چکیده

در این پژوهش، نانوذرات FeNi3  به دو روش گرمابی و هم‌رسوبی تهیه شدند. در روش گرمابی، اثر زمان و دماهای مختلف با مقادیر متفاوت از کاهش‌دهنده هیدریت هیدرازین بررسی گردید. سپس نمونه‌ها با پراش­سنج پرتو x (XRD)، میکروسکوپ الکترون روبشی گسیل میدانی (FESEM) و مغناطیس‌سنج نمونه ارتعاشی (VSM) مشخصه‌یابی شدند. نتایج الگوی پراش نشان داد که مقدار استفاده شده از هیدریت هیدرازین در تک فاز شدن نمونه‌ها بسیار مؤثر است. تصاویر FESEM نانو بودن ذرات را نشان می‌دهد، اما در بعضی از دما و زمان‌ها نانوذره تشکیل نشده­اند یا چسبندگی و ذوب شدگی در تصاویر دیده می‌شود. نتایج VSM نشان داد که نمونه‌های تهیه شده به دو روش خاصیت مغناطیسی بالایی دارند و مغناطش اشباع آن­ها تفاوت چندانی ندارد.    

کلیدواژه‌ها


عنوان مقاله [English]

Fabrication and comparison of the structural and magnetic properties of FeNi3 nanoparticles made by hydrothermal and co-precipitation methods

نویسندگان [English]

  • Mousavi Ghahfarokhi
  • Hamalzadeh Ahmadi
چکیده [English]

In this paper, the nanoparticles of FeNi3 were prepared by hydrothermal and co-precipitation methods. Also, different times and temperatures with different amounts of the hydrazine reducing hydrate were investigated in hydrothermal method. After fabrication of the samples by two methods, the samples have been characterized using the x-ray diffraction analysis (XRD), the field emission scanning electron microscopy (FESEM), and magnetic properties of the samples using a vibrating sample magnetometer (VSM). The results of diffraction pattern show that the amount of hydrazine hydrate used is very effective in single-phase sampling. FESEM images show nanoparticles, but at some temperatures and times, particles are not formed or stickiness and melting are observed. The results of VSM analysis show that the samples have high magnetic properties in both methods and not much change in saturation magnetization between samples was seen in both methods.
 

کلیدواژه‌ها [English]

  • FeNi3 nanostructures
  • hydrothermal method
  • co-precipitation method
  • structural properties magnetic properties
[1] Chen H., Xu C., Zhao G., Liu Y., “Template-free formation of urchin-like FeNi3 microstructures by hydrothermal reduction”, Materials Letters, 91 (2013) 75-77.‌

[2] Tang N. J., Zhong W., Jiang H. Y., Han Z. D., Zou W. Q., Du Y. W., “Complex permeability of FeNi3/SiO2 core-shell nanoparticles”, Solid state communications, 132 (2004) 71-74.

[3] Hongxia G., Hua C., Fan L., Zhenping Q., Suping C., Zuoren N., “Shape-controlled synthesis of FeNi3 nanoparticles by ambient chemical reduction and their magnetic properties”, Journal of Materials Research 27 (2012) 1522-1530.‌

[4] Oleksakova D., Kollár P., Füzer J., “Structure and magnetic properties of powdered and compacted FeNi alloys”, Materials Letters 91 (2013) 75–77.

[5] Ma T., Yuan M., Islam, S. M., Li H., Ma S., Sun G., Yang X., "FeNi3 alloy nanocrystals grown on graphene: Controllable synthesis, in-depth characterization and enhanced electromagnetic performance”, Journal of Alloys and Compounds 678 (2016) 468-477.‌

[6] Nirouei M., Jafari A., Boustani K., “Magnetic and structural study of FeNi 3 nanoparticles: effect of calcination temperature”, Journal of Superconductivity and Novel Magnetism 27 (2014) 2803-2811.‌

[7] Yuan M. L., Tao J. H., Yu L., Song C., Qiu G. Z., Li Y., Xu Z. H., “Synthesis and magnetic properties of Fe–Ni alloy nanoparticles obtained by hydrothermal reaction”, In Advanced Materials Research 239 (2011) 748-753.

[8] Dang M. Z., Rancourt D. G., “Simultaneous magnetic and chemical order-disorder phenomena in Fe 3 Ni, FeNi, and FeNi 3”, Physical Review B 53 (1996) 2291.‌

[9] Liao Q., Tannenbaum R., Wang Z. L., “Synthesis of FeNi3 alloyed nanoparticles by hydrothermal reduction”, The Journal of Physical Chemistry B 110 (2006) 14262-14265.‌

[10] Han T., Xu C., Chen H., “Simple synthesis of novel mushroom-like FeNi3 microstructures by a hydrothermal reduction”, Materials Research Innovations 23 (2019) 39-42.‌

[11] Lu X., Liang G., Sun Q., Yang C., “High-frequency magnetic properties of FeNi3–SiO2 nanocomposite synthesized by a facile chemical method”, Journal of alloys and compounds 509 (2011) 5079-5083.‌

[12] Lu X., Liang G., Zhang Y., “Synthesis and characterization of magnetic FeNi3 particles obtained by hydrazine reduction in aqueous solution”, Materials Science and Engineering: B 139 (2007) 124-127.‌

[13] Abellán G., Carrasco J. A., Coronado E., Prima-García H., “Synthesis of FeNi 3 nanoparticles in benzyl alcohol and their electrical and magnetic properties”, Journal of sol-gel science and technology 70 (2014) 292-299.‌

[14] Li G., Mei Y., Hou F., “Magnetic properties of FeNi3/NiZn-ferrite nanocomposite prepared by hydrothermal method for application in high frequency”, Ferroelectrics 521 (2017) 116-125.‌

[15] Amir M., Gungunes H., Slimani Y., Tashkandi N., El Sayed H. S., Aldakheel F., Baykal A., “Mössbauer studies and magnetic properties of cubic CuFe 2 O 4 nanoparticles”, Journal of Superconductivity and Novel Magnetism 32 (2019) 557-564.‌

[16] Sharifi Z., “Fabrication and investigation of magnetic and structural properties of lead spinel nanoparticles”, Master Thesis, Faculty of Science Department of Physics, Shahid Chamran University of Ahvaz (1395).

[17] Yan S. J., Zhen L., Xu C. Y., Jiang J. T., Shao W. Z., “Microwave absorption properties of FeNi3 submicrometre spheres and SiO2@ FeNi3 core–shell structures”, Journal of Physics D: Applied Physics 43 (2010) 245003.‌

[18] Lu X., Wu J., Huo G., Sun Q., Huang Y., Han Z., Liang G., “Protein-passivated FeNi3 particles with low toxicity and high inductive heating efficiency for thermal therapy”, Colloids and Surfaces A: Physicochemical and Engineering Aspects 414 (2012) 168-173.‌

[19] Patil R P, Waghmare M B, Chikalkar M G, Delekar S D., "Effect of Sintering Temperature on Structural, Morphological, and Magnetic Properties of Nickel Ferrite Prepared via a Polyol Method", Macromol. Symp 393 (2020) 2000178.

[20] Mousavi Ghahfarokhi S. E., Ahmadi M., Kazeminezhad I., “Effects of Bi3+ Substitution on Structural, Morphological, and Magnetic Properties of Cobalt Ferrite Nanoparticles”, Journal of Superconductivity and Novel Magnetism 32 (2019) 3251-3263.‌

[21] Mousavi Ghahfarokhi S. E., Hosseini S., Zargar Shoushtari M., “Fabrication of SrFe 12− x NixO19 nanoparticles and investigation on their structural, magnetic and dielectric properties”, International Journal of Minerals Metallurgy and Materials 22 (2015) 876-883.‌

[22] Jacobo S. E., Herme C., Bercoff P. G. “Influence of the iron content on the formation process of substituted Co–Nd strontium hexaferrite prepared by the citrate precursor method”, Journal of Alloys and Compounds 495 (2010) 513-515.

[23] Mousavi Ghahfarokhi S. E., Hosseini S., Zargar Shoushtari M., “Fabrication and study of magnetic and dielectric properties of strontium hexaferite nanoparticles type M”, Iranian Journal of Crystallography and Mineralogy 2 (1394) 359-372.

[24] Cullity B. D, Graham C. D, " Introduction to magnetic materials", John Wiley &Sons (2011).