زمین‌شیمی و ویژگی‌های گوهرشناسی کروندوم‌ در پگماتیت‌های خاکو، شمال شرق باتولیت الوند (غرب ایران)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه آزاد اسلامی واحد تهران شمال

2 دانشگاه خوارزمی

چکیده

کانسار خاکو در جنوب و جنوب شرق شهر همدان و در نزدیکی روستای خاکو در غرب ایران قرار دارد. در این منطقه کروندوم‌هایی به رنگ آبی درون رگه‌های پگماتیتی و بدنه گرانیتی وجود دارند. داده‌های سن‌سنجی مطلق با روش‌های گوناگون پرتوسنجی نشان می‌دهد که سنگ‌های دگرگونی در گستره زمانی ژوراسیک تا کرتاسه تشکیل شده و سپس در ژوراسیک میانی تا کرتاسه پیشین، مورد هجوم توده‌های نفوذی قرار گرفته‌اند و فازهای جوانتر و رگه‌های پگماتیتی درون آن­ها نفوذ کرده‌اند. فعالیت‌های گرمابی سیال های داغ تراوش یافته از توده گرانیتی همبری­های ویژه شامل بلورهای کروندوم + کیانیت+ میکا ± پلازیوکلاز را به وجود آورده­اند. کانی‌های آلومینوسیلیکاتی و کروندوم در این رگه ها و توده های کوچک پگماتیتی و لبه توده گرانیتی دیده می‌شوند. برپایه بررسی­‌های انجام شده، فرآیندهای دگرگونی دگرنهادی و ترکیب قلیایی غنی از آلومین توده نفوذی منجر به یک مدل زایشی بر اساس تبادل دوطرفه سیال های داغ در دمای بالا و فشار متوسط شده که در آن پدیده سیلیس‌زدایی گسترده، افزایش نسبت Al/Si و تبدیل بلورهای آلومینوسیلیکات و پلاژیوکلاز به کروندوم طی فرآیندهای پیشرونده در یک سامانه زمین شیمیایی باز صورت گرفته است. بنابراین خاستگاه کانسار خاکو با یک مدل ماگمایی دگرنهاده قابل توجیه است. نتایج نشان می‌دهد، که مقدار عناصر کمیاب کروندوم‌های منطقه خاکو گستره تغییرات وسیعی دارند. بلورهای کروندوم طبیعی کانسار خاکو از نظر عمق رنگ در گروه­های 6 و 7، از نظر میزان درخشندگی در گستره 2 و 3 رنگ سرد و از نظر رنگ مایه در گروه بنفش آبی (VB)  و آبی (B)  قرار دارند. کروندوم‌‌های مورد بررسی در منطقه خاکو دارای کمتر از 1 درصد وزنی عنصر آهن، ppm 10 تا 47 گالیوم، ppm 83 تا 690 تیتانیوم و 30 (ppm) عنصر وانادیوم هستند و شباهت شیمیایی با نمونه‌های معادن همنشین با سینیت‌ها در تانزانیا دارند.

کلیدواژه‌ها


عنوان مقاله [English]

Geochemistry and gemology characteristics of corundum in the Khakoo pegmatites in the southeast of Alvand batholith (west Iran).

نویسندگان [English]

  • Sadeghi 1
  • Mahmoudi 2
  • Reza Jafari 1
  • Arian 1
1
2
چکیده [English]

The Khakoo deposit is located in south and southeast of Hamedan city, near the Khakoo village, in western Iran. In this area, blue corundum formed inside the pegmatite veins and granite body. Geochronological data, using various radiometric methods, show that metamorphic rocks formed during the Jurassic to Cretaceous. Then during the Middle Jurassic to Early Cretaceous time, a massive intrusive masses as well as younger phases and pegmatite vines penetrated into this body. The hydrothermal activity of hot fluids driving from the granite mass has created specific paragenesis including corundum crystals. Aluminosilicate and corundum minerals are formed in the pegmatite filons and the margin of granite body. Based on recent studies, the metamorphic–metasomatic process and per-alumnus alkaline composition of intrusive body made a genetic model which based on the bimodal exchange of hot fluids at high temperature and medium pressure are the phenomenon of extensive desilicification and increases of the Al/Si ratio. Metasomatic progressive processes have changed aluminosilicate and plagioclase minerals to corundum in an open geochemical system. Therefore, the Khakoo deposit in a metasomatic magmatic model can be justified. According to the results obtained in this study, natural corundums have a large variation in most trace elements. The collected crystals are in the 6th- 7th rank in terms of tone, from the Saturation terms in the range of 2 and 3 cool colors and based on the Hue termsour samples fill in the Violet Blue (VB) and Blue (B) groups. The Khakoo corundum deposit contain less than 1% (Wt) Iron, 10 to 47 (ppm) Gallium, 83 to 690 (ppm) Titanium, and 30 (ppm) Vanadium. Finally, the Khakoo deposit has resembled associated deposits with the alkaline syenite in Tanzania mines.

کلیدواژه‌ها [English]

  • corundum
  • metasomatism
  • gemology
  • Khakoo
  • Hamedan
[1] Voudouris P., Mavrogonatos C., Graham I., Giuliani G., Melfos V., Karampelas S., Karantoni V., Wang K., Tarantola A., Zaw K., Meffre S., Klemme S., Berndt J., Heidrich S., Zaccarini F., Fallick A., Tsortanidis M., Lampridis A., " Gem Corundum Deposits of Greece"Geology Mineralogy and Genesis". Minerals 1 (2019) 9-49.

[2] Sheikhi Gheshlaghi R., Ahmadi M H., "Pegmatites characteristics of South Hamadan: Sapphire gemological study approach (in Persian)". Geochemistry 4 (2015) 269-282.

[3] Nemati H., Kavianimanesh A., Maanijou M., "Study of corundum in pegmatites of Alvand south of Hamadan province (In Persian)", 23rd symposium of Crystallography and Mineralogy of Iran (2016) 27-28.

[4] Sadeghi H., Mahmoudi S. H., Jafari M. R., Arian M. A., "Geochemistry and petrogenesis of corundum pegmatites and corundum crystal geochemistry in Alvand batholith in the southwest of Hamadan", Asian Journal Exploration Sciences 33 (2019) 19-25.

[5] Mahmoudi S., Corfu F., Masoudi F., Mehrabi B., Mohajjel M., "U–Pb dating and emplacement history of granitoid plutons in the northern Sanandaj–Sirjan Zone, Iran", Journal of Asian Earth Sciences. 41 (2011) 238-249.

[6] Pape N., "petrogenesis of hight P-T metamorphic rock corundum bearenig in the east Borojerd granite body (In Persian) ", M. Sc thesis, Kharazmi University, Thehran, Iran (2014).

[7] Malmer Chegeni M., "Synthetic Crystal garnet grow as a garnet gem (In Persian) ", M. S.c thesis, Kharazmi University, Tehran, Iran (2017).

[8] Aghanabati A., "The Geology of Iran (In Persian)", Geological Survey of Iran, Tehran, (2004) 586.

[9] Stocklin J., "Structural history and tectonics of Iran a review ", AAPG Bulletin, 52 (1968) 1229-1258.

[10] Baharifar A. A., "Petrology of metamorphic rocks in the Hamedan area (In Persian)", Ph.D Thesis, Tarbiat Moallem University, Tehran, Iran, (2004) 218.

[11] Monfaredi B., Hauzenberger CA., Neubauer F., Schulz B., Genser J., Shakerardakani F., Halama R., "Deciphering the Jurassic-Cretaceous evolution of the Hamadan metamorphic complex during Neotethys subduction, western Iran" Internasional Journal of Earth Sciences (Geolgy Rundsch) 109 (2020) 2135-2168.

[12] Chiu H Y., Chung SL., Zarrinkoub M H., Mohammadi S S., Khatib M M., Iizuka Y., "Zircon U–Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny", Lithos 162-163 (2013) 70-87.

[13] Shahbazi H., Siebel W., Pourmoafee M., Ghorbani M., Sepahi A A., Shang C K., Vousoughi-Abedini M., "Geochemistry and U–Pb zircon geochronology of the Alvand plutonic complex in Sanandaj–Sirjan zone (Iran): New evidence for Jurassic magmatism", Journal of Asian Earth Sciences 39 (2010) 668-83.

[14] Baharifar A.A., "New perspective on petrogenesis of the regional metamorphic rocks of Hamedan area (In Persian) ", M. Sc Thesis, Tarbiat Moallem University, Tehran, Iran (1997).

[15] Moin Vaziri H., Baharifar A A., "The study of protholite of metamorphic rocks in the hamedan area (in Persian)", 1est annual conference of Iran Geology Society, Tehran (1997).

[16] Schmetzer K., Peretti A., "Some Diagnostic Features of Russian Hydrothermal Synthetic Rubies and Sapphires", Gems and Gemology 35 (1999) (1) 17-28.

[17] Kordi F., Sepahi A A., Izadi Kiyan L., "The study of mineral chemistry and thermobarometry of kyanite-bearing rocks in metamorphic complex of Hamedan area (In Persian)", Iranian Journal of Crystallography and Mineralogy 26 (1) 2018 3-18.

[18] Sepahi A., Jafari S R., Mani-Kashani S.,"The study of chemical composition and evolution of minerals during various metamorphic eviense in the Hamadan (In Persian)", Iranian Journal of Crystallography and Mineralogy 14 (2) (2006) 431-454.

[19] Sepahi A., Cavosie A., "Constraints on isotope thermometry of quartz aluminosilicate veins in the Hamadan region using Oxygen stable isotopes (In Persian)", Iranian Journal of Crystallography 13 (2) 2005 245-258.

[20] Sepahi A A., Molaee T., "A study of various occurrences of the Al2SiO5 polymorphs in the rocks/veins of the Hamedan region, Iran: With special reference to origin of quartz-kyanite veins (In Persian)". Iranian Journal of Crystallography and Mineralogy 18 (2) (2010) 33-42.

[21] Jafari S R., Sepahi A A., Moazzen M., Shahbazi H., "The Study of Continuous and Discontinuous Zoning of Garnet Mineral in the Migmatites of the Hamedan Region and Its Petrogenetic Applications (In Persian)", Iranian Journal of Crystallography and Mineralogy 27 (1) (2019) 31-46.

[22] Schwarz D., Pardieu V., Saul J M., Schmetzer K., Laus B M., Giuliani G., Klemm L., Malsy A., Erel E., Hauzenberger C., "Rubies and Sapphires from Winza, Central Tanzania", Gems and Gemology 44 (2008) 322-347.

[23] Zwaan J H., Buter E., Mertz-Kraus R., Kane R.E., "Alluvial sapphires from Montana: Inclusions, geochemistry and indications of a metasomatic origin", Gems Gemology 51 (2015) 370-391.

[24] Hänni H A., Stern W B., "Über die gemmologische Bedeutung des Gallium-Nachweises in Korunden", Zeitschrift der Deutschen Gemmologischen Gesellschaft 31 (4) (1982) 255-261.

[25] Kuhlmann H., “Emissionsspektralanalyse von natürlichen und synthetischen Rubinen, Sapphiren, Smaragden und Alexandriten”, Zeitschrift der Deutschen Gemmologischen Gesellschaft 32 (4) (1983) 179-195.

[26] Schrader H W., Henn U., "On the problems of using the gallium content as a means of distinction between natural and synthetic gemstones", Journal of Gemmology 20 (2) (1986) 108-113.

[27] Tang S. M., Tang S. H., Mok K. F., Retty A. T., Tay T. S., "A study of natural and synthetic rubies by PIXE", Applied Spectroscopy 43 (2) (1989) 219-222.

[28] Muhlmeister S., Devouard B., "Trace element chemistry of natural and synthetic rubies", Proceedings of the International Gemological Symposium, A. S. Keller, Ed., Gemological Institute of America, Santa Monica, CA (1991) 139-140.

[29] Yu P., Mok D., "Separation of natural and synthetic rubies using X-ray fluorescence analysis", Journal of the Gemmological Association of Hong Kong 16 (1993) 57-59.

[30] Acharya R., Burte P P., Nair A., Reddy A. V. R., Manohar S. B., "Multielement analysis of natural ruby samples by neutron activation using the single comparator method", Journal of Radioanalytical and Nuclear Chemistry 220 (1997) 223-227.

[31] Harder H., "Farbgebende Spurenelemente in den natürlichen Korunden", Neues Jahrbuch für Mineralogie Abhandlungen 110 (2) (1969) 128-141.

[32] Delé-Dubois M. L., Fournier J., Peretti A., "Rubis du Vietnam", Revue de Gemmologie a.f.g 114 (1993) 7-10.

[33] Osipowicz T., Tay TS., Orlic I., Tang S M., Watt F., "Nuclear microscopy of rubies trace elements and inclusions", Nuclear Instruments and Methods in Physics Research B 104 (1995) 590-594.

[34] Sanchez J. L., Osipowicz T., Tang S. M., Tay T. S., Win T. T., "Micro-PIXE analysis of trace element concentrations of natural rubies from different locations in Myanmar", Nuclear Instruments and Methods in Physics Research B 130 (1997) 682-686.

[35] Saminpanya S., Manning D A C., Droop GTR., Henderson, C M B., "Trace elements in Thai gems corundum", Journal of Gemology 28 (2003) 392-398.

[36] Sutherland F. L., Graham I. T., Meffre S., Zwingmann H., Pogson R. E., "Passive-margin prolonged volcanism, East Australian Plate: outbursts, progressions, plate controls and suggested causes", Australian Journal of Earth Sciences 59 (2012) 983-1005.

[37] Peucat J J., Ruffault P., Fritsch E., Bouhnik-Le Coz M., Simonet C., Lasnier B., "Ga/Mg ratio as a new geochemical tool to differentiate magmatic from metamorphic blue sapphires", Lithos 98 (2007) 261-274.

[38] Kozlowski A., "Metasomatic origin of the granitoid pegmatites", Mineralog Socatland of Poland Spec Papers 20 (2002) 112-116.

[39] Atikarnsakul U., Vertriest W., Soonthorntantikul W., "Characterization of blue sapphires from the Mogok Stone Tract, Mandalay region, Burma (Myanmar)", GIA News (2018) 1-56.

[40] Zwaan J. H., Buter E., Mertz-Kraus R., Kane R. E., "Alluvial sapphires from Montana: Inclusions, geochemistry and indications of a metasomatic origin", Gems and Gemology 51 (2015) 370-391.

[41] Simonet C., Fritsch E., Lasnier B. A., "classification of gem corundum deposits aimed towards gem exploration", Ore Geology Review 34 (2008) 127-133.

[42] Rakotondrazafy A. F. M., Giuliani G., Ohnenstetter D., Fallick A.E., Rakotosamizanany S., Andriamamonjy A., Ralantoarison T., Razanatseheno M., Offant Y., Garnier V., "Gem corundum deposits of Madagascar (A review) ", Ore Geology Review 34 (2008) 134-154.

[43] Sutherland F. L., Zaw K., Meffre S., Giuliani G., Fallick A. E., Graham I .T., Webb G. B., "Gem corundum megacrysts from East Australia basalt fields: Trace elements, O isotopes an origins", Australian Journal Earth Sciences 56 (2009) 1003-1020.

[44] Pham Van L., Hoáng Quang V., Garnier V., Giuliani G., Ohnenstetter D., Lhomme T., Schwarz D., Fallick A. E., Dubessy J., Phan Trong T., "Gem corundum deposits in Vietnam", Journal Gemology 29 (2004) 129-147.

[45] Giuliani G., Ohnenstetter D., Fallick A E., Groat L., Fagan A. J., Groat L A., "The geology and genesis of gem corundum deposits (Chapter 2 Ed)", Geology of Gem Deposits, second ed., Mineralogical Association of Canada Short Course Series 44 (2014) 29-112.

[46] Robb L. J., Robb V.M., "Archean pegmatite deposits in the North-Eastern Transvaal", Mineral Deposits South Africa 12 (1986) 437-449.

[47] Korzhinsky D. S., "An outline of metasomatic processes", Internasional Geology Review 6 (1964)10-11

[48] Korzhinsky D. S., "Theory of metasomatic zoning", Clarendon Press, Oxford, U.K (1970).

[49] Kolesnik Y. U. N., "High temperature metasomatism in ultramafic massifs. Novosibirsk, Nauka", Russia (1976).

[50] Lawson A. C., "Plumasite, an oligoclase corundum rock, near Spanish Peak", California (1903).