ویژگی‌های ریزساختاری، نوری و مغناطیسی نانوذرات Mn0/3-xBaxCu0/2Zn0/5Fe2O4

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه دامغان

چکیده

اثر جانشانی یون Ba بر ویژگی­های ساختاری، نوری و مغناطیسی فریت­های Mn0/3-xBaxCu0/2Zn0/5Fe2O4 بررسی شد.
نمونه­ها با پراش­سنج پرتو ایکس، طیف­سنج تبدیل فوریه فروسرخ، میکروسکوپ الکترونی روبشی، طیف­سنج نوری مرئی-فرابنفش و مغناطیس­سنج نمونه ارتعاشی مشخصه­یابی شدند. نتایج ساختاری نشان داد که ساختار نمونه­ها تا جانشانی x = 0/20 کاملاً در یک ساختار مکعبی تک فاز (گروه فضایی Fd3m) بلوری شده­اند، در حالی که فاز ناخالصی BaO در نمونه­های با x = 0/25, 0/30 دیده شد. افت مشاهده شده در مغناطش نمونه­ها ناشی از حضور یون­های غیرمغناطیسی Ba2+ در جایگاه هشت­وجهی است. گاف انرژی نمونه­ها با افزایش جانشانی باریم تا x = 0/10 یک روند افزایشی را نشان می­دهد و در ادامه با جانشانی، کاهش می­یابد. مقادیر گاف نواری بدست آمده با مقادیر پیشتر گزارش شده برای فریت­ها هم­خوانی دارد. هم­چنین افزایش گاف انرژی نمونه­ها با افزایش باریم را می­توان بر پایه تغییرات ساختار الکترونی توضیح داد.    

کلیدواژه‌ها


عنوان مقاله [English]

Microstructural, optical, and magnetic properties of Mn0.3-xBaxCu0.2Zn0.5Fe2O4 nanoparticles

نویسندگان [English]

  • Gholizadeh
  • Beyranvand
  • Zahedi
چکیده [English]

The effect of Ba ion substitution on structural, optical, and magnetic properties of Mn0.3-xBaxCu0.2Zn0.5Fe2O4 ferrites was investigated. The samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, UV-Vis spectroscopy, and vibrating sample magnetometer at room temperature. Structural results show that the structure of the samples with x up to 0.20 is completely indexed to a single-phase cubic structure (space group Fd m), while the impurity phase of BaO is observed in the samples with x = 0.25, 0.30. As the substitution content increases, the presence of non-magnetic Ba2+ ions in the octahedral site decreases the saturation magnetization of the samples. Comparison of the bandgap energy of the samples shows an increasing trend with Ba substitution for x up to 0.10 and then decreases, which can be interpreted in terms of changes in the electronic structure of the samples.
 

کلیدواژه‌ها [English]

  • Mn-Cu-Zn spinel ferrite
  • Citrate-nitrate method
  • X-ray diffraction
  • magnetic properties
  • Optical properties
  1. [1] Satalkar M., Kane S.N., "On the study of Structural properties and Cation distribution of Zn0.75-xNixMg0.15Cu0.1Fe2O4 nano ferrite: Effect of Ni addition", Journal of Physics: Conference Series 755 (2016) 012050. [DOI:10.1088/1742-6596/755/1/012050]
  2. [1] Satalkar M., Kane S.N., "On the study of Structural properties and Cation distribution of Zn0.75-xNixMg0.15Cu0.1Fe2O4 nano ferrite: Effect of Ni addition", Journal of Physics: Conference Series 755 (2016) 012050. [DOI:10.1088/1742-6596/755/1/012050]
  3. [2] Assar S.T., Abosheiasha H.F., Sayed A.R.El., "Effect of γ-rays irradiation on the structural, magnetic, and electrical properties of Mg-Cu-Zn and Ni-Cu-Zn ferrites," ‎Journal of Magnetism and Magnetic Materials, 23 (2014) 037503.
  4. [2] Assar S.T., Abosheiasha H.F., Sayed A.R.El., "Effect of γ-rays irradiation on the structural, magnetic, and electrical properties of Mg-Cu-Zn and Ni-Cu-Zn ferrites," ‎Journal of Magnetism and Magnetic Materials, 23 (2014) 037503.
  5. [3] Sefatgol R., Gholizadeh A., "The effect of the annealing temperature on the microstructural, magnetic, and spin-dynamical properties of Mn-Mg-Cu-Zn ferrites", Physica B 624 (2022) 413442. [DOI:10.1016/j.physb.2021.413442]
  6. [3] Sefatgol R., Gholizadeh A., "The effect of the annealing temperature on the microstructural, magnetic, and spin-dynamical properties of Mn-Mg-Cu-Zn ferrites", Physica B 624 (2022) 413442. [DOI:10.1016/j.physb.2021.413442]
  7. [4] Blooki F., Khandan Fadafan H., Lotfi Orimi R., "Effect of Mn2+ substitution on the structure and magnetic properties of nanosized Ni(0.5-x)MnxZn0.5Fe2O4 (x = 0, 0.25, 0.35, 0.5) ferrites prepared by co-precipitation method", Iranian Journal of Crystallography and Mineralogy 23 (2015) 285-294.
  8. [4] Blooki F., Khandan Fadafan H., Lotfi Orimi R., "Effect of Mn2+ substitution on the structure and magnetic properties of nanosized Ni(0.5-x)MnxZn0.5Fe2O4 (x = 0, 0.25, 0.35, 0.5) ferrites prepared by co-precipitation method", Iranian Journal of Crystallography and Mineralogy 23 (2015) 285-294.
  9. [5] Zaker A., "The Effect of Microstracture in Magnetic Properties of Barium Ferrite", Iranian Journal of Crystallography and Mineralogy 3 (1995) :113-122
  10. [5] Zaker A., "The Effect of Microstracture in Magnetic Properties of Barium Ferrite", Iranian Journal of Crystallography and Mineralogy 3 (1995) :113-122
  11. [6] Haque M.M., Huq M., Hakim M.A., "Effect of Cu for Mn on the magnetic properties of Mn-Zn ferrites", Indian J. Phys. 78A (2004) 397-400.
  12. [6] Haque M.M., Huq M., Hakim M.A., "Effect of Cu for Mn on the magnetic properties of Mn-Zn ferrites", Indian J. Phys. 78A (2004) 397-400.
  13. [7] Alam F., Khan Mohammad H. R., Das H.N., Hossain A.A.K.M., "Structural and Magnetic Properties of Mn0.50-xZn0.50CuxFe2O4", ‎Materials Sciences and Applications 4 (2013) 831-838. [DOI:10.4236/msa.2013.412106]
  14. [7] Alam F., Khan Mohammad H. R., Das H.N., Hossain A.A.K.M., "Structural and Magnetic Properties of Mn0.50-xZn0.50CuxFe2O4", ‎Materials Sciences and Applications 4 (2013) 831-838. [DOI:10.4236/msa.2013.412106]
  15. [8] Manjurul Haque M., Huq M., Hakim M.A., "Influence of CuO and sintering temperature on the microstructure and magnetic properties of Mg-Cu-Zn ferrites", ‎Journal of Magnetism and Magnetic Materials 320 (2008) 2792-2799. [DOI:10.1016/j.jmmm.2008.06.017]
  16. [8] Manjurul Haque M., Huq M., Hakim M.A., "Influence of CuO and sintering temperature on the microstructure and magnetic properties of Mg-Cu-Zn ferrites", ‎Journal of Magnetism and Magnetic Materials 320 (2008) 2792-2799. [DOI:10.1016/j.jmmm.2008.06.017]
  17. [9] Reddy M.P., Penchal M., Ramana M.V., Venkata M., Madhuri W., Sadhana K., Kumar K. V.S., R.R. Reddy, "Effects of sintering temperature on structural and electromagnetic properties of MgCuZn ferrite prepared by microwave sintering", Adv. Appl. Ceram. 114 (2015) 326-332. [DOI:10.1179/1743676115Y.0000000003]
  18. [9] Reddy M.P., Penchal M., Ramana M.V., Venkata M., Madhuri W., Sadhana K., Kumar K. V.S., R.R. Reddy, "Effects of sintering temperature on structural and electromagnetic properties of MgCuZn ferrite prepared by microwave sintering", Adv. Appl. Ceram. 114 (2015) 326-332. [DOI:10.1179/1743676115Y.0000000003]
  19. [10] Gill N.K., Puri R.K., "Mossbauer study of Li0.5Fe2.5-xCrxO4 ferrites", Spectrochimica Acta A 41 (1985) 1005-1008. [DOI:10.1016/0584-8539(85)80064-7]
  20. [10] Gill N.K., Puri R.K., "Mossbauer study of Li0.5Fe2.5-xCrxO4 ferrites", Spectrochimica Acta A 41 (1985) 1005-1008. [DOI:10.1016/0584-8539(85)80064-7]
  21. [11] El-Sayed A.M., "Effect of chromium substitutions on some properties of NiZn ferrites", Ceramics International 28 (2002) 651-655. [DOI:10.1016/S0272-8842(02)00022-6]
  22. [11] El-Sayed A.M., "Effect of chromium substitutions on some properties of NiZn ferrites", Ceramics International 28 (2002) 651-655. [DOI:10.1016/S0272-8842(02)00022-6]
  23. [12] Manikandan A., Judith Vijaya J., John Kennedy L., Bououdina M., "Structural, optical and magnetic properties of Zn1-xCuxFe2O4 nanoparticles prepared by microwave combustion method", Journal of Molecular Structure 1035 (2013) 332-340. [DOI:10.1016/j.molstruc.2012.11.007]
  24. [12] Manikandan A., Judith Vijaya J., John Kennedy L., Bououdina M., "Structural, optical and magnetic properties of Zn1-xCuxFe2O4 nanoparticles prepared by microwave combustion method", Journal of Molecular Structure 1035 (2013) 332-340. [DOI:10.1016/j.molstruc.2012.11.007]
  25. [13] Manikandan A., JohnKennedy L., Bououdina M., JudithVijaya J., "Synthesis, Optical and magnetic properties o pure and Co-doped ZnFe2O4 nanoparticles by microwave combustion method", Journal of Magnetism and Magnetic Materials 349 (2014) 249-258. [DOI:10.1016/j.jmmm.2013.09.013]
  26. [13] Manikandan A., JohnKennedy L., Bououdina M., JudithVijaya J., "Synthesis, Optical and magnetic properties o pure and Co-doped ZnFe2O4 nanoparticles by microwave combustion method", Journal of Magnetism and Magnetic Materials 349 (2014) 249-258. [DOI:10.1016/j.jmmm.2013.09.013]
  27. [14] Abareshi M., Goharshadi E.K., Zebarjad S.M., Fadafan H.K., Youssefi A., "Fabrication, characterization and measurement of thermal conductivity of Fe3O4 nanofluids", Journal of Magnetism and Magnetic Materials 322 (2010) 3895-3901. [DOI:10.1016/j.jmmm.2010.08.016]
  28. [14] Abareshi M., Goharshadi E.K., Zebarjad S.M., Fadafan H.K., Youssefi A., "Fabrication, characterization and measurement of thermal conductivity of Fe3O4 nanofluids", Journal of Magnetism and Magnetic Materials 322 (2010) 3895-3901. [DOI:10.1016/j.jmmm.2010.08.016]
  29. [15] Manikandan A., Judith Vijaya J., John Kennedy L., Bououdina M., "Microwave combustion synthesis, structural, optical and magnetic properties of Zn1-xSrxFe2O4 nanoparticles", Ceramics International 39 (2013) 5909-5917. [DOI:10.1016/j.ceramint.2013.01.012]
  30. [15] Manikandan A., Judith Vijaya J., John Kennedy L., Bououdina M., "Microwave combustion synthesis, structural, optical and magnetic properties of Zn1-xSrxFe2O4 nanoparticles", Ceramics International 39 (2013) 5909-5917. [DOI:10.1016/j.ceramint.2013.01.012]
  31. [16] Ajmal M., Asghari M., "Structural, electrical and magnetic properties of Cu1-xZnxFe2O4 ferrites", Journal of Alloys and Compounds 460 (2008) 54-59. [DOI:10.1016/j.jallcom.2007.06.019]
  32. [16] Ajmal M., Asghari M., "Structural, electrical and magnetic properties of Cu1-xZnxFe2O4 ferrites", Journal of Alloys and Compounds 460 (2008) 54-59. [DOI:10.1016/j.jallcom.2007.06.019]
  33. [17] Banerjee M., Verma N., Prasad R., "Structural and catalytic properties of Cu1-xZnxFe2O4 nanoparticles", Journal of Materials Science 42 (2007)1833-1837. [DOI:10.1007/s10853-006-0821-1]
  34. [17] Banerjee M., Verma N., Prasad R., "Structural and catalytic properties of Cu1-xZnxFe2O4 nanoparticles", Journal of Materials Science 42 (2007)1833-1837. [DOI:10.1007/s10853-006-0821-1]
  35. [18] Shamgani N., Gholizadeh A., "Structural, magnetic and elastic properties of Mn0.3−xMgxCu0.2Zn0.5Fe3O4 nanoparticles", Ceramics International 45 (2019) 239-246. [DOI:10.1016/j.ceramint.2018.09.158]
  36. [18] Shamgani N., Gholizadeh A., "Structural, magnetic and elastic properties of Mn0.3−xMgxCu0.2Zn0.5Fe3O4 nanoparticles", Ceramics International 45 (2019) 239-246. [DOI:10.1016/j.ceramint.2018.09.158]
  37. [19] Gholizadeh A., Jafari E., "Effects of sintering atmosphere and temperature on structural and magnetic properties of Ni-Cu-Zn ferrite nanoparticles: magnetic enhancement by a reducing atmosphere", J. Magn. Magn. Mater. 422 (2017) 328-336. [DOI:10.1016/j.jmmm.2016.09.029]
  38. [19] Gholizadeh A., Jafari E., "Effects of sintering atmosphere and temperature on structural and magnetic properties of Ni-Cu-Zn ferrite nanoparticles: magnetic enhancement by a reducing atmosphere", J. Magn. Magn. Mater. 422 (2017) 328-336. [DOI:10.1016/j.jmmm.2016.09.029]
  39. [20] Gholizadeh A., Beyranvand M., "Structural, magnetic, elastic, and dielectric properties of Mg0.3−xBaxCu0.2Zn0.5Fe2O4 nanoparticles", Physica B: Physics of Condensed Matter 584 (2020) 412079. [DOI:10.1016/j.physb.2020.412079]
  40. [20] Gholizadeh A., Beyranvand M., "Structural, magnetic, elastic, and dielectric properties of Mg0.3−xBaxCu0.2Zn0.5Fe2O4 nanoparticles", Physica B: Physics of Condensed Matter 584 (2020) 412079. [DOI:10.1016/j.physb.2020.412079]
  41. [21] Beyranvand M., Gholizadeh A., "Structural, magnetic, elastic, and dielectric properties of Mn0.3−xCdxCu0.2Zn0.5Fe2O4 nanoparticles", Journal of Materials Science: Materials in Electronics 31 (2020) 5124-5140. [DOI:10.1007/s10854-020-03073-8]
  42. [21] Beyranvand M., Gholizadeh A., "Structural, magnetic, elastic, and dielectric properties of Mn0.3−xCdxCu0.2Zn0.5Fe2O4 nanoparticles", Journal of Materials Science: Materials in Electronics 31 (2020) 5124-5140. [DOI:10.1007/s10854-020-03073-8]
  43. [22] Ahmad Gholizadeh, "A comparative study of physical properties in Fe3O4 nanoparticles prepared by coprecipitation and citrate methods", Journal of the American Ceramic Society 100 (2017) 3577-3588. [DOI:10.1111/jace.14896]
  44. [22] Ahmad Gholizadeh, "A comparative study of physical properties in Fe3O4 nanoparticles prepared by coprecipitation and citrate methods", Journal of the American Ceramic Society 100 (2017) 3577-3588. [DOI:10.1111/jace.14896]
  45. [23] Gholizadeh A., Tajabor N., "Influence of N2- and Ar-ambient annealing on the physical properties of SnO2:Co transparent conducting films", Mater. Sci. Semicond. Process. 13 (3) (2010) 162-166. [DOI:10.1016/j.mssp.2010.10.004]
  46. [23] Gholizadeh A., Tajabor N., "Influence of N2- and Ar-ambient annealing on the physical properties of SnO2:Co transparent conducting films", Mater. Sci. Semicond. Process. 13 (3) (2010) 162-166. [DOI:10.1016/j.mssp.2010.10.004]
  47. [24] Shannon R.D., "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides", Acta Cryst. A 32 (1976) 751-767. [DOI:10.1107/S0567739476001551]
  48. [24] Shannon R.D., "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides", Acta Cryst. A 32 (1976) 751-767. [DOI:10.1107/S0567739476001551]
  49. [25] Gholizadeh A., "A comparative study of the physical properties of Cu-Zn ferrites annealed under different atmospheres and temperatures: Magnetic enhancement of Cu0.5Zn0.5Fe2O4 nanoparticles by a reducing atmosphere", Journal of Magnetism and Magnetic Materials 452 (2017) 389-397. [DOI:10.1016/j.jmmm.2017.12.109]
  50. [25] Gholizadeh A., "A comparative study of the physical properties of Cu-Zn ferrites annealed under different atmospheres and temperatures: Magnetic enhancement of Cu0.5Zn0.5Fe2O4 nanoparticles by a reducing atmosphere", Journal of Magnetism and Magnetic Materials 452 (2017) 389-397. [DOI:10.1016/j.jmmm.2017.12.109]
  51. [26] Mahmoudi S., Gholizadeh A., "Effect of non-magnetic ions substitution on the structure and magnetic properties of Y3−xSrxFe5−xZrxO12 nanoparticles", J. Magn. Magn. Mater. 456 (2018) 46-55. [DOI:10.1016/j.jmmm.2018.02.017]
  52. [26] Mahmoudi S., Gholizadeh A., "Effect of non-magnetic ions substitution on the structure and magnetic properties of Y3−xSrxFe5−xZrxO12 nanoparticles", J. Magn. Magn. Mater. 456 (2018) 46-55. [DOI:10.1016/j.jmmm.2018.02.017]
  53. [27] Ajmal M., Asghari M., "Structural, electrical and magnetic properties of Cu1− xZnxFe 2O4 ferrites (0≤ x≤ 1)", Journal of Alloys and Compounds 460 (2008) 54-59. [DOI:10.1016/j.jallcom.2007.06.019]
  54. [27] Ajmal M., Asghari M., "Structural, electrical and magnetic properties of Cu1− xZnxFe 2O4 ferrites (0≤ x≤ 1)", Journal of Alloys and Compounds 460 (2008) 54-59. [DOI:10.1016/j.jallcom.2007.06.019]
  55. [28] Khedri H., Gholizadeh A., Malekzadeh A., "Effect of annealing temperature on structural, optical and catalytic properties of Cu-Zn ferrite nanoparticles", Iranian Journal of Crystallography and Mineralogy 24 (2016) 297-308.
  56. [28] Khedri H., Gholizadeh A., Malekzadeh A., "Effect of annealing temperature on structural, optical and catalytic properties of Cu-Zn ferrite nanoparticles", Iranian Journal of Crystallography and Mineralogy 24 (2016) 297-308.