[1] Lackner E., Krainer J., Wimmer-Teubenbacher R., Sosada F., Deluca M., Gspan M., Rohracher K., Wachmann E., Köck A., “Carbon monoxide detection with CMOS integrated thin film SnO2 gas sensor”, Materials Today: Proceedings 4 (2017) 7128-7131.
[2] Parthibavarman M., Hariharan V., Sekar C., “High-sensitivity humidity sensor based on SnO2 nanoparticles synthesized by microwave irradiation method”, Materials Science and Engineering: C 31 (2011) 840-844.
[3] Yang X., Zhang S., yu Q., Zhao L., Sun P., Wang T., Liu F., Yan X., Gao Y., Liang X., Zhang S., Lu G., “One step synthesis of branched SnO2/ZnO heterostructures and their enhanced gas-sensing properties”, Sensors and Actuators B: Chemical 281 (2019) 415-423.
[4] Malekiyan M., Fadavieslam M., Ardyanian M., “ Investigation of the structural, optical and gas sensing properties of Aluminum doped zinc -oxide nanoparticles synthesized by solvo-thermal method”, Iranian Journal of Crystallography and Mineralogy 27 (2019) 975-984.
[5] Mohammad-Yousefi S., Rahbarpour S., Ghafoorifard H., “Describing the effect of Ag/Au modification on operating temperature and gas sensing properties of thick film SnO2 gas sensors by gas diffusion theory”, Materials Chemistry and Physics 227 (2019) 148-156.
[6] Kou X., Xie N., Chen F., Wang T., Guo L., Wang C., Wang Q., Ma J., Sun Y., Zhang H., Lu G., “Superior acetone gas sensor based on electrospun SnO2 nanofibers by Rh doping”, Sensors and Actuators B: Chemical 256 (2018) 861-869.
[7] Rabiee F., Ghazi M.A., Izadifard M., “Investigation of sensing properties of cobalt doped nickel-ferrite nanostructures synthesized by microwave method”, Iranian Journal of Crystallography and Mineralogy 23(4) (2016) 689-698.
[8] Karthik T.V.K., Olvera M.D.l.L., Maldonado A., Gómez Pozos H., “CO Gas Sensing Properties of Pure and Cu-Incorporated SnO2 Nanoparticles: A Study of Cu-Induced Modifications”, Sensors 16 (2016) 1283.
[9] Li Y., Chen N., Deng D., Xing X., Xiao X., Wang Y., “Formaldehyde detection: SnO2 microspheres for formaldehyde gas sensor with high sensitivity, fast response/recovery and good selectivity”, Sensors and Actuators B: Chemical 238 (2017) 264-273.
[10] Krishna M., Komarneni S., “Conventional- vs microwave-hydrothermal synthesis of tin oxide, SnO2 nanoparticles”, Ceramics International 35 (2009) 3375-3379.
[11] Salah N., Habib S., Azam A., Ansari M.S., W.M. “Al-Shawafi, Formation of Mn-Doped SnO2 Nanoparticles Via the Microwave Technique: Structural, Optical and Electrical Properties”, Nanomaterials and Nanotechnology 6 (2016) 17.
[12] Haque B.M., Chandra D.B., Jiban P., Nurul I., Abdullah Z., “Influence of Fe2+/Fe3+ ions in tuning the optical band gap of SnO2 nanoparticles synthesized by TSP method: Surface morphology, structural and optical studies”, Materials Science in Semiconductor Processing 89 (2019) 223-233.
[13] Al-Saadi T.M., Hussein B.H., Hasan A.B., Shehab A.A., “Study the Structural and Optical Properties of Cr doped SnO2 Nanoparticles Synthesized by Sol-Gel Method”, Energy Procedia 157 (2019) 457-465.
[14] Motevalizadeh L., Ettefagh R., GHorbani E., “Synthesis and characterization of structural and optical properties of SnO2 nanotubes by sol-gel method and using alumina template”, Iranian Journal of Crystallography and Mineralogy 21(3) (2013) 573-580.
[15] Wang H., Qu Y., Li Y., Chen H., Lin H., “Effect of Ce3+ and Pd2+ Doping on Coral-Like Nanostructured SnO2 as Acetone Gas Sensor”, Journal of Nanoscience and Nanotechnology 13 (2013) 1858-1862.
[16] Salimi kuchi P., Roshan H., Sheikhi M.H., “A novel room temperature ethanol sensor based on PbS:SnS2 nanocomposite with enhanced ethanol sensing properties”, Journal of Alloys and Compounds 816 (2020) 152666.
[17] Asgari M., Saboor F.H., Mortazavi Y., Khodadadi A.A., “SnO2 decorated SiO2 chemical sensors: Enhanced sensing performance toward ethanol and acetone”, Materials Science in Semiconductor Processing 68 (2017) 87-96.
[18] Kumar M., Bhatt V., Abhyankar A.C., Kim J., Kumar A., Patil S.H., Yun J.-H., “New insights towards strikingly improved room temperature ethanol sensing properties of p-type Ce-doped SnO2 sensors”, Scientific Reports 8 (2018)
[19] Mamakhel A., Søndergaard M., Borup K., Brummerstedt Iversen B., “Continuous flow hydrothermal synthesis of rutile SnO2 nanoparticles: Exploration of pH and temperature effects”, The Journal of Supercritical Fluids 166 (2020) 105029.
[20] Duhan M., Kumar N., Gupta A., Singh A., Kaur H., “Enhanced room temperature ferromagnetism in Cr and Fe co-doped SnO2 nanoparticles synthesized by sol-gel method”, Vacuum 181 (2020) 109635.
[21] Hermawan A., Asakura Y., Inada M., Yin S., “A facile method for preparation of uniformly decorated-spherical SnO2 by CuO nanoparticles for highly responsive toluene detection at high temperature”, Journal of Materials Science & Technology 51 (2020) 119-129.
[22] Divya J., Pramothkumar A., Joshua Gnanamuthu S., Bernice Victoria D.C., Jobe prabakar P.C., “Structural, optical, electrical and magnetic properties of Cu and Ni doped SnO2 nanoparticles prepared via Co-precipitation approach”, Physica B: Condensed Matter 588 (2020) 412169.
[23] Mahjouri S., Kosari-Nasab S., Mohajel Kazemi E., Divband B., Movafeghi B., “Effect of Ag-doping on cytotoxicity of SnO2 nanoparticles in tobacco cell cultures”, Journal of Hazardous Materials 381 (2020) 121012.
[24] Deepa K., Venkatesha T.V., “Combustion synthesis of Ni doped SnO2 nanoparticles for applications in Zn-composite coating on mild steel”, Journal of Science: Advanced Materials and Devices 3 (2018) 412-418.
[25] Liu S., Li L., Jiang W., Liu C., Ding W., Chai W., “Crystallinity and morphology-controlled synthesis of SnO2 nanoparticles for higher gas sensitivity”, Powder Technology, 245 (2013) 168-173.
[26] Li Y., Zhao F.-X., Lian X.-X., Zou Y.-L., Wang Q., Zhou Q.-J., “Highly Sensitive Ethanol Sensor Based on Au-Decorated SnO2 Nanoparticles Synthesized Through Precipitation and Microwave Irradiation”, Journal of Electronic Materials, 45 (2016) 3149-3156.
[27] Parthibavarman M., Vallalperuman K., Sathishkumar S., Durairaj M., Thavamani K., “A novel microwave synthesis of nanocrystalline SnO2 and its structural optical and dielectric properties”, Journal of Materials Science: Materials in Electronics 25 (2013) 730-735.
[28] Parthibavarman M., Renganathan B., Sastikumar B., “Development of high sensitivity ethanol gas sensor based on Co-doped SnO2 nanoparticles by microwave irradiation technique”, Current Applied Physics 13 (2013) 1537-1544.
[29] Mendes P.G., Moreira M.L., Tebcherani S.M., Orlandi M.O., Andrés J., Li M.S., Diaz-Mora N., Varela J.A., Longo E., “SnO2 nanocrystals synthesized by microwave-assisted hydrothermal method: towards a relationship between structural and optical properties”, Journal of Nanoparticle Research 14 (2012).
[30] Wang X., Huang R., Kong X.Y., “Synthesis and optoelectrical properties of SnO2 nanospheres derived by microwave-assisted hydrothermal method”, Applied Physics A 116 (2014) 1959-1962.
[31] Akram M., Saleh A.T., Ibrahim W.A.W., Awan A.S., Hussain R., “Continuous microwave flow synthesis (CMFS) of nano-sized tin oxide: Effect of precursor concentration”, Ceramics International 42 (2016) 8613-8619.
[32] Zhu Z.F., Zhou J.Q., Wang X.F., He Z.L., Liu H., “Effect of pH on photocatalytic activity of SnO2 microspheres via microwave solvothermal route”, Materials Research Innovations 18 (2014) 8-13.
[33] Motevalizadeh L., Sepahvand F., “Investigation of the effect of annealing temperature on lattice micro strains of SnO2 nano particles prepared by sol-gel method”, Iranian Journal of Crystallography and Mineralogy 24 (2016) 493-502.
[34] Singh G., Virpal, R.C. Singh, “Highly sensitive gas sensor based on Er-doped SnO2 nanostructures and its temperature dependent selectivity towards hydrogen and ethanol”, Sensors and Actuators B: Chemical 282 (2019) 373-383.
[35] Ghaleghafi E., Rahmani M., “Fabrication, characterization and investigation of gas sensing properties of MoO3 thin films”, Iranian Journal of Crystallography and Mineralogy 27 (2019) 475-486.
[36] Rajeshwaran P., Sivarajan A., “Influence of Mn doping on structural, optical and acetone gas sensing properties of SnO2 nanoparticles by a novel microwave technique”, Journal of Materials Science: Materials in Electronics 26 (2015) 539-546.
[37] Karthik K., Revathi V., Tatarchuk T., “Microwave-assisted green synthesis of SnO2 nanoparticles and their optical and photocatalytic properties”, Molecular Crystals and Liquid Crystals 671 (2018) 17-23.
[38] Krishnakumar T., Pinna N., Kumari K.P., Perumal K., Jayaprakash K., “Microwave-assisted synthesis and characterization of tin oxide nanoparticles”, Materials Letters 62 (2008) 3437-3440.
[39] Rajesh N., Kannan J.C., Krishnakumar T., Leonardi S.G., Neri G., “Sensing behavior to ethanol of tin oxide nanoparticles prepared by microwave synthesis with different irradiation time”, Sensors and Actuators B: Chemical 194 (2014) 96-104.
[40] Jouhannaud J., Rossignol J., Stuerga D., “Rapid synthesis of tin (IV) oxide nanoparticles by microwave induced thermohydrolysis”, Journal of Solid State Chemistry 181 (2008) 1439-1444.
[41] Zhu L., Wang M., Kwan Lam T., Zhang C., Du H., Li H., Yao Y., “Fast microwave-assisted synthesis of gas-sensing SnO2 quantum dots with high sensitivity”, Sensors and Actuators B: Chemical 236 (2016) 646-653.
[42] Nilavazhagan S., Muthukumaran S., “Investigation of optical and structural properties of Fe, Cu co-doped SnO2 nanoparticles”, Superlattices and Microstructures, 83 (2015) 507-520.
[43] Nehru L.C., Sanjeeviraja C., “Rapid synthesis of nanocrystalline SnO2 by a microwave-assisted combustion method”, Journal of Advanced Ceramics, 3 (2014) 171-176.
[44] Liu X., Pan L., Chen T., Li J., Yu K., Sun Z., Sun C., “Visible light photocatalytic degradation of methylene blue by SnO2 quantum dots prepared via microwave-assisted method”, Catalysis Science & Technology, 3 (2013) 1805-1809.
[45] Amutha T., Rameshbabu M., Sasi Florence S., Senthilkumar N., Vetha Potheher I., Prabha K., “Studies on structural and optical properties of pure and transition metals (Ni, Fe and co-doped Ni–Fe) doped tin oxide (SnO2) nanoparticles for anti-microbial activity”, Research on Chemical Intermediates, 45 (2019) 1929-1941.
[46] Rajeshwaran P., Sivarajan A., Raja G., Madhan D., Rajkumar P., “Effect of tungsten (W6+) metal ion dopant on structural, optical and photocatalytic activity of SnO2 nanoparticles by a novel microwave method”, Journal of Materials Science: Materials in Electronics, 27 (2016) 2419-2425.
[47] Habibzadeh S., Khodadadi A.A., Mortazavi Y., “CO and ethanol dual selective sensor of Sm2O3-doped SnO2 nanoparticles synthesized by microwave-induced combustion”, Sensors and Actuators B: Chemical, 144 (2010) 131-138.
[48] Zhang W., Yang B., Liu J., Chen X., Wang X., Yang C., “Highly sensitive and low operating temperature SnO2 gas sensor doped by Cu and Zn two elements”, Sensors and Actuators B: Chemical 243 (2017) 982-989.
[49] Wang C., Zeng W., Luo L., Zhang P., Wang Z., “Gas-sensing properties and mechanisms of Cu-doped SnO2 spheres towards H2S”, Ceramics International 42 (2016) 10006-10013.
[50] Lian X., Li Y., Tong X., Zou Y., Liu X., An D., Wang Q., “Synthesis of Ce-doped SnO2 nanoparticles and their acetone gas sensing properties”, Applied Surface Science 407 (2017) 447-455.
[51] Jin W.X., Ma S.Y., Tie Z.Z., Wei J.J., Luo J., Jiang X.H., Wang T.T., Li W.Q., Cheng L., Mao Y.Z., “One-step synthesis and highly gas-sensing properties of hierarchical Cu-doped SnO2 nanoflowers”, Sensors and Actuators B: Chemical 213 (2015) 171-180.