بررسی شیمی کانی دونیت‌های منطقه آبگرم (جنوب استان کرمان) : رهیافتی بر جایگاه زمین‌ساختی ماگمایی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه شهید باهنر کرمان

چکیده

مجموعه فرامافیک آبگرم در جنوب استان کرمان، در دورترین بخش جنوب شرق پهنه سنندج سیرجان، جزئی از کمربند افیولیتی اسفندقه – حاجی‌آباد به شمار می‌رود. سنگ­های فرامافیک بیشتر هارزبورژیت، دونیت و لرزولیت هستند. دونیت‌ها پس از  هارزبورژیت‌ها بیشترین حجم را توالی فرامافیکی منطقه دارند و درون پیکره‌های هارزبورژیتی به صورت توده‌ای، پراکنده شده‌اند. به دلیل گسل خوردگی فراوان، رابطه اولیه دونیت‌ها با هارزبورژیت‌‌‌‌‌‌‌های منطقه به سختی قابل تشخیص است و گاهی به شدت سرپانتینی شده‌اند. الیوین فراوانترین کانی موجود در دونیت‌های مجموعه فرامافیک آبگرم است. مقدار فورستریت در این کانی­ها از 84/90 تا 27/91 درصد وزنی تغییر می‌کند. مقادیر بالای فورستریت در الیوین­های موجود در دونیت‌ها و همچنین ترکیب کروم اسپینل‌های موجود در این سنگ‌ها نشان می‌دهد که این پریدوتیت‌ها وابسته به گوشته هستند و ماهیت افیولیتی و تهی شده دارند به طوری که به احتمال بسیار در یک محیط گوشته­ای زیر حوضه پشت قوس، در اثر واکنش مذاب­های بازالتی حوضه پشت قوس با پریدوتیت­ها ایجاد شده­اند. آن­ها سپس به صورت زمین­ساختی و به شکل بخشی از آمیزه افیولیت در پوسته جایگزین گردیده­اند.      

کلیدواژه‌ها


عنوان مقاله [English]

Mineral chemistry studies of dunites in the Abgarm region (south of Kerman Province): An approach to tectonomagmatic position.

نویسندگان [English]

  • Alipour
  • Moeinzadeh
  • Ahmadipour
چکیده [English]

The Abgarm ultramafic complex in south of Kerman Province and also southeast of  Sanandaj – Sirjan zone is a part of Esfandagheh- HajiAbad ophiolitic belt. Most ultramafic rocks are harzburgite, dunite, and lherzolite. Dunites form the largest volume of ultramafic sequence in the study area after harzburgite and they are scattered into the mass form of harzburgites. Due to the present of several faults, it is difficult to detect the initial relationship between the dunites and the harzburgites in the region, and they are sometimes severely serpentinized. Olivine is the most abundant mineral in the dunites of the Abgarm ultramafic complex. The amount of forsterite in these minerals varies from 72.91 to 84.90 and the high amounts of forsterite in the olivines in the dunites, as well as the composition of the chromium spinels in these rocks show that peridotites belong to the mantle and have ophiolitic and depleted nature and probably are formed inn the back-arc basin environment by the reaction of the basaltic melts of the back-arc basin with peridotites. Then they were replaced tectonically as a part of the ophiolite mélange in the crust.

کلیدواژه‌ها [English]

  • dunite
  • harzburgite
  • ophiolite
  • Esfandagheh- HajiAbad
  • Abgarm ultramafic complex
  • Kerman
[1] Jonnalagadda M. K., Karmalkar N. R., Benoit M., Gregoire M., Duraiswami R. A., Harshe S., Kamble S., “Compositional variations of chromian spinels from peridotites of the Spontang ophiolite complex, Ladakh, NW Himalayas, India: petrogenetic implications”, Geosciences Journal 23(6) (2019) 895-915.

[2] Dare S. A. S., Pearce J. A., McDonald I., Styles M. T., “Tectonic discrimination of peridotites using fO2–Cr# and Ga–Ti–FeIII systematics in chrome–spinel”, Chemical Geology 261(3) (2009) 199-216.

[3] Gonzelez-Jimenez J. M., Proenza J. A., Camprubí A., Centeno-García E., González-Partida E., Griffin W. L., O’Reilly S. Y., Pearson N. J., “Chromite deposits at Loma Baya: petrogenesis and clues for the origin of the coastal Guerrero Composite Terrane in Mexico”, 11th Biennial meeting SGA (2011) Chile.

[4] Piccardo G. B., “Mantle processes during ocean formation: petrologic records in peridotites from the Alpine-Apennine ophiolites”, Episodes 26(3) (2003) 193-199.

[5] Pomonis P., & Magganas A., “Petrogenetic Implications for Ophiolite Ultramafic Bodies from Lokris and Beotia (Central Greece) Based on Chemistry of Their Cr-spinels”, Geosciences 7(1) (2017) 10.

[6] Uysal İ., Zaccarini F., Garuti G., Meisel T., Tarkian M., Bernhardt H., Sadiklar M,” Ophiolitic chromitites from the Kahramanmaras area, southeastern Turkey: Their platinum-group elements (PGE) geochemistry, mineralogy and Os-isotope signature”, Ofioliti 32(2007) 151.

[7] Boudier F., Nicolas A., “Harzburgite and lherzolite subtypes in ophiolitic and oceanic environments”, Earth and Planetary Sciece Letters 76(1) (1985) 84-92.

[8] Kubo K., “Dunite Formation Processes in Highly Depleted Peridotite: Case Study of the Iwanaidake Peridotite, Hokkaido, Japan”, Journal of petrology 43(3) (2002) 423-448.

[9] Kamenetsky V.S, Crawford A.J, Meffre S., “Factors Controlling Chemistry of Magmatic Spinel: An Empirical Study of Associated Olivine, Cr-Spinel and Melt Inclusions from Primitive Rocks”, Journal of petrology 42 (2001) 655–671.

[10] Roeder P. L., Reynolds I., “Crystallisation of Chromite and Chromium Solubility in Basaltic Melts”, Journal of Petrology 32 (1991) 909–934.

[11] Ghasemi H., Derakhshi M., "Mineralogy, geochemistry and role of olivine mechanical separation in generation of Lower Paleozoic igneous rocks in Shirgesht area, NW of Tabas, Central Iran", Iran J Crystallogr Mineral 16 (2008) 227-224.

[12] Elthon D., “Petrology of Gabbroic Rocks from The Mid-Cayman Rise Spreading Center”, Journal of Geophysical Research 92 (1987) 658-682.

[13] Ghasemi H., Juteau T., Bellon H., Sabzehei M., Whitechurch H., Ricou, L.E., “The mafic–ultramafic complex of Sikhoran (central Iran): a polygenetic ophiolite complex”, Comptes Rendus Geoscience 334(6) (2002) 431-438.

[14] Ahmadipour H., Sabzehei M., Emami M., Whitechurch H., Rastad E., “Soghan complex as an evidence for paleospreading center and mantle diapirism in Sanandaj-Sirjan zone (south-east Iran)”, (2003).

[15] Najafzadeh A., Ahmadipour H., “Using platinum-group elements and Au geochemistry to constrain the genesis of podiform chromitites and associated peridotites from the Soghan mafic–ultramafic complex, Kerman, Southeastern Iran”, Ore Geology Reviews 60 (2014) 60-75.

[16] Peighambari S., Ahmadipour H., Stosch H.-G., & Daliran F., “Evidence for multi-stage mantle metasomatism at the Dehsheikh peridotite massif and chromite deposits of the Orzuieh coloured mélange belt, southeastern Iran”, Ore Geology Reviews 39(4) (2011) 245-264.

[17] Jannessary M. R., Melcher F., Lodziak J., Meisel T. C., “Review of platinum-group element distribution and mineralogy in chromitite ores from southern Iran”, Ore Geology Reviews, 48 (2012) 278-305.

[18] Sabzehei, M. S., “Upper protrozoic-Lower Paleozoic ultramafic-mafic association of south-east Iran, product of an ophiolitic magma of komatiitic affinity”, International Ophiolite Symposium Abstracts (1998) Finland.

[19] Mohammadi M., Ahmadipour H., Moradian A., “Origin of Lherzolitic Peridotites in Ab-Bid Ultramafic Complex (Hormozgan Province); Products of Mantle Metasomatism or Partial Melting Processes?”, Journal of Sciences, Islamic Republic of Iran 29(1) (2018) 53-65.

[20] Sahandi M. R., Azizian H., Nazemzade M., Navazi M., Atapour H., “orzueiyeh 1/100000 Geological map. Geological Survey & Mineral exploration of Iran”, Series, No. 7346 (2007).

[21] Parsons A. J., Zagorevski J. J. Ryan W. C., McClelland C. R., Van Staal M. J., Coleman M. L.,"Petrogenesis of the Dunite Peak ophiolite, south-central Yukon, and the distinction between upper-plate and lower-plate settings: A new hypothesis for the late Paleozoic–early Mesozoic tectonic evolution of the Northern Cordillera." Bulletin 131 (2019) 274-298.

[22] Chaika I. F., Izokh A. E., “Dunites of the Inagli massif (Central Aldan), cumulates of lamproitic magma”, Russian Geology and Geophysics 59 (2018) 1450-1460.

[23] Ghaseminejad F., Torabi Gh., "Petrography and mineral chemistry of wehrlites in contact zone of gabbro intrusions and mantle peridotites of the Naein ophiolite", (2015) 291-304.

[24] Nouri., Yoshihiro A., Azizi H., Tsuboi M., "Petrogenesis of the Harsin–Sahneh serpentinized peridotites along the Zagros suture zone, western Iran: new evidence for mantle metasomatism due to oceanic slab flux", Geological Magazine 156 (2019) 772-800.

[25] Boskabadi, A., Iain K., Pitcairn M., Leybourne I., Damon AH., Matthew J., Hadizadeh H., Nasiri Bezenjani R., Monazzami Bagherzadeh R., "Carbonation of ophiolitic ultramafic rocks: Listvenite formation in the Late Cretaceous ophiolites of eastern Iran”, Lithos 352 (2020) 105307.

[26] Escuder-Viruete J., Baumgartner P. O, "Structural evolution and deformation kinematics of a subduction-related serpentinite-matrix mélange, Santa Elena Peninsula, northwest Costa Rica", Journal of Structural Geology 66 (2014) 356-381.

[27] Kretz R. "Symbols for rock-forming minerals", American Mineralogist 68 (1983) 227-279.

[28] Ghasemi H., Derakhshi M., "Mineralogy, geochemistry and role of olivine mechanical separation in generation of Lower Paleozoic igneous rocks in Shirgesht area, NW of Tabas, Central Iran”, Iran Crystallography Mineral 16 (2008) 227-224.

[29] Zheng J., O'reilly S. Y., Griffin W. L., Lu, F., Zhang M., "Nature and evolution of Cenozoic lithospheric mantle beneath Shandong peninsula, Sino-Korean craton, eastern China", International Geology Review 40 (1998) 471-499.

[30] Zheng J. P., W. L. Griffin S. Yo O’Reilly C. M. Yu, H. F., Zhang N., Zhang M. "Mechanism and timing of lithospheric modification and replacement beneath the eastern North China Craton: peridotitic xenoliths from the 100 Ma Fuxin basalts and a regional synthesis", Geochimica et Cosmochimica Acta 71 (2007) 5203-5225.

[31] Zheng J., O'Reilly S. Y., Griffin W. L., Lu F., Zhang M., Pearson N. J., "Relict refractory mantle beneath the eastern North China block: significance for lithosphere evolution", Lithos 57 (2001) 43-66.

[32] Senda R., Shimizu K., Suzuki K., "Ancient depleted mantle as a source of boninites in the Izu-Bonin-Mariana arc: evidence from Os isotopes in Cr-spinel and magnetite", Chemical Geology 439 (2016) 110-119.

[33] Ahmed A. H., "Highly depleted harzburgite–dunite–chromitite complexes from the Neoproterozoic ophiolite, south Eastern Desert, Egypt: a possible recycled upper mantle lithosphere", Precambrian Research233 (2013) 173-192.

[34] Allahyari K., Saccani E., Rahimzadeh B., Zeda O., "Mineral chemistry and petrology of highly magnesian ultramafic cumulates from the Sarve-Abad (Sawlava) ophiolites (Kurdistan, NW Iran): New evidence for boninitic magmatism in intra-oceanic fore-arc setting in the Neo-Tethys between Arabia and Iran", Journal of Asian Earth Sciences 79 (2014) 312-328.

[35] Dick H. J., & Bullen T., "Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas", Contributions to mineralogy and petrology 86 (1984) 54-76.

[36] Mateus A., Figueiras J., "Chemical composition of Cr-spinels in deformed and metamorphosed ultramafic/mafic complexes from Portugal; can it be used as an ore-guide for Ni-Cu sulphide mineralizations", In Actas II Congresso Ibérico de Geoquímica, XI Semana de Geoquímica, Lisboa, Portugal (1984) 255-258.

[37] Proenza J. A., Zaccarini F., Lewis J. F., Longo F., Garuti G., "Chromian spinel composition and the platinum-group minerals of the PGE-rich Loma Peguera chromitites, Loma Caribe peridotite, Dominican Republic", The Canadian Mineralogist 45 (2007) 631-648.

[38] Kepezhinskas K., Defant J., DruMmmond S., "Na metasomatism in the island-arc mantle by slab melt—peridotite interaction: evidence from mantle xenoliths in the North Kamchatka Arc", Journal of Petrology 36 (1995) 1505-1527.

[39] Rollinson H., "The geochemistry of mantle chromitites from the northern part of the Oman ophiolite: inferred parental melt compositions", Contributions to Mineralogy and Petrology 156 (2008) 273-288.

[40] Aswad K. J., Aziz N. R., Koyi H. A., "Cr-spinel compositions in serpentinites and their implications for the petrotectonic history of the Zagros Suture Zone, Kurdistan Region, Iraq", Geological magazine 148 (2011): 802-818.

[41] Garrido C. J., Bodinier, J.L., “Diversity of mafic rocks in the Ronda peridotites: evidence for pervasive melt-rock reaction during heating of subcontinental lithosphere by upwelling asthenosphrer”, Journal of petrology 40 (1999) 729-754.

[42] Kamenetsky V. S., Crawford A. J., Meffre S., "Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks", Journal of Petrology 42 (2001) 655-671.

[43] Zhou M. F., Robinson P. T., Maples J., Li Z., "Podiform chromitites in the Luobusa ophiolite (southern Tibet): implications for melt-rock interaction and chromite segregation in the upper mantle", Journal of Petrology 37 (1996) 3-21.

[44] Daines M. J., Kohlstedt D. L., "The transition from porous to channelized flow due to melt/rock reaction during melt migration", Geophysical Research Letters 21 (1994) 145-148.

[45] Rizeli M. E., Beyarslan M., Wang K. L., Bingöl A. F., "Mineral chemistry and petrology of mantle peridotites from the Guleman ophiolite (SE Anatolia, Turkey): Evidence of a forearc setting", Journal of African Earth Sciences 123 (2016) 392-402.

[46] Arai S., "Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry”, Mineralogical Magazine 56 (1992) 173-184.

[47] Bloomer S. H., Fisher R. L., "Petrology and geochemistry of igneous rocks from the Tonga Trench: A non-accreting plate boundary", The Journal of Geology 95 (1987) 469-495.

[48] Bloomer S. H., Hawkins J. W., "Gabbroic and ultramafic rocks from the Mariana Trench: an island arc ophiolite", GMS 27 (1983) 294-317.

[49] Ishii T., Robinson P.T., Maekawa H., Fiske R., "Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu-Ogasawara-Mariana forearc, Leg 125", In Proceedings of the ocean drilling program, scientific results 125 (1992) 445-485.

[50] Parkinson I. J., Pearce J. A., "Peridotites from the Izu–Bonin–Mariana forearc (ODP Leg 125): evidence for mantle melting and melt–mantle interaction in a supra-subduction zone setting", Journal of Petrology (1998) 1577-1618.

[51] Choi S. H., Shervais J. W., Mukasa S. B., "Supra-subduction and abyssal mantle peridotites of the Coast Range ophiolite, California", Contributions to Mineralogy and Petrology 156 (2008) 551.

[52] Jingsui Y., Fahui X., Guolin G., Fei L., Fenghua L., Songyong C., Liwen Z., "The Dongbo ultramafic massif: a mantle peridotite in the western part of the Yarlung Zangbo suture zone, Tibet, with excellent prospects for a major chromite deposit", Acta Petrologica Sinica 27 (2011) 3207-3222.

[53] Xu D., Huang G., Lei Y., "Origin of the Xiugugabu ophiolite massif, SW Tibet: evidence from petrology and geochemistry", Geotectonica et Metallogenia 31 (2007) 490-501.

[54] Moghadam H. S., Stern R. J., Chiaradia M., Rahgoshay M., "Geochemistry and tectonic evolution of the Late Cretaceous Gogher–Baft ophiolite, central Iran", Lithos 168 (2013) 33-47.