بررسی خاک دیرینه کالکریتی در سازند شوریجه؛ نمونه‌ای از برش قرقره در شرق حوضه رسوبی کپه داغ

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه فردوسی مشهد

چکیده

سازند شوریجه (ژوراسیک پسین- کرتاسه پیشین)، در شرق حوضه رسوبی کپه‏داغ، از رخساره‏های آواری تشکیل شده و افزون بر آن، خاک دیرینه از نوع کلسی­سول نیز در این سازند شناسایی شده‏ است. کلسی‏سول‏های برش قرقره دارای شکل­های درشت­ریختار و ریزریختار ویژه‏ای هستند به طوری که وجود غالب ریز بافت بتا بیانگر فعالیت‏ ریزجانداران در تشکیل کالکریت‏های این برش است. خاک­های دیرینه این برش در معرض فرآیندهای حفاری موجودات، سیمانی­شدن و پیریتی شدن قرار گرفته‏اند. فشار دی اکسید کربن دیرینه در این برش 10/2237 تا ppmv 08/2981 اندازه­گیری شده‏است که حدود 99/7 تا 65/10 برابر مقدار کنونی است و با مقادیر مدلسازی شده برای این زمان همخوانی دارد. افزون بر فعالیت‏های زیست­زا، نوسان­های سطح ایستابی در پهنه مخلوط نقش مهمی در تشکیل خاک­های دیرینه کلکریتی سازند شوریجه در برش قرقره داشته‏اند.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of paleosol in Shurijeh Formation; Example from the Ghorghoreh section in the eastern Kopet- Dagh sedimentary basin

نویسندگان [English]

  • Keshmiri
  • Mahmudy Gharaie
  • Moussavi-Harami
  • Mahboubi
چکیده [English]

The Shurijeh Formation (Upper Jurassic-Early Cretaceous) is composed of siliciclastic facies in the eastern KopetDagh basin. Moreover, the identified paleosol in this formation is calcisol type. The identified calcisols of the Ghorghoreh section have particular micro and macro morphology shapes. Since the beta microfabric is dominant in these paleosol, therefore microorganisms activity plays an important role in the formation of calcretes. The paleosols in this section have been affected by processes such as boring, micritization, cementation, and pyritization. The CO2 paleopressure has been calculated to be about 2237.1 to 2981.08, which is about 7.99 to 10.65 times more than today's values and seems to be similar to the modeled values for that period. In addition to biogenic activities, the water table fluctuations in the phreatic zone led to the formation of calcretic paleosols in the studied section.

کلیدواژه‌ها [English]

  • Paleosol
  • Shurijeh Formation
  • cretaceous
  • calcisol
[1] Mortazavi M., Mousavi Harami R., Mahboubi A., Najafi M., “Paleosol types and characteristics in Shurijeh Formation (Late Jurassic-Early Cretaceous), Kopeh Dagh sedimentary basin, Northeast of Iran”, Stratigraphy and Sedimentology Research,46, (2011), 1-32.[In Persian].

[2] Moussavi-Harami R., Mahboubi A., Nadjafi M., Brenner R.L., Mortazavi M., “Mechanism of calcrete formation in the Lower Cretaceous (Neocomian) fluvial deposits, northeastern Iran based on petrographic, geochemical data”, Cretaceous Research 30, (2009), 1146-1156.

[3] Mortazavi M., Moussavi-Harami R., Brenner R. L., Mahboubi A., “Stable isotope record in pedogenic carbonates in northeast Iran: Implications for Early Cretaceous (Berriasian-Barremian) paleovegetation and paleoatmospheric P (CO2) levels”, Geoderma, 211-212, (2013), 85-97.

[4] Robert A., Letouzey j., Kavoosi M.A., Sherkati Sh., Muller C., Verges J., Aghababaei A., “Structural evolution of the Kopeh Dagh fold-and-thrusbelt (NE Iran) and interactions with the South CaspianSea Basin and Amu Darya Basin”, Marine and Petroleum Geology. 57 (2004) 68-87.

[5] Afshar-Harb A.,”The stratigraphy tectonics and petroleum geology of Kopet-Dagh region, northern Iran. Unpublished PHD thesis, Petroleum Geology Section”, Imperial College, London, (1979), 316pp.

[6] Hosseinyar G., Moussavi Harami R., Abdollahie Fard I., Mahboubi A., Noemani Rad R., “Seismic geomorphology and stratigraphic trap analyses of the Lower Cretaceous siliciclastic reservoir in the Kopeh Dagh- Amu Darya Basin”, petroleum Science , Volume (16), (2019), 776-793.

[7] Mack G.H., James W.C., Monger H.C., “Classification of paleosols”, Geological Society of America Bulletin105, (1993), 129-136.

[8] Dickson J.A.D., “Carbonate identification and genesis as revealed by staining”. Journal of Sedimentary Petrology.36 (1966) 441-505.

[9] Tucker M.E., “Sedimentary Petrology” Third Edition, Blackwell, Oxford,( 2001), 260pp.

[10] Boggs S., Jr., Krinsley D., “Applications of Cathodoluminescence Imaging to the Study of Sedimentary Rocks”, Cambridge, New York, (2006), 165 pp.

[11] Walker G., “Mineralogical applications of luminescence techniques. In: Berry, F.J. and Vaughan, D.J.(Eds)”, Chemical Bonding and Spectroscopy in Mineral Chemistry: Champman and Hall, London, (1985), 103-140.

[12] Parcerisa D., Gomez-Gras D., Trave A., Martin- Martin J.D., Maestro E., “Fe, Mn in calcites cementing red beds: a record of oxidation-reduction conditions examples from the Catalan Coastal Ranges (NE Spain)”, Journal of Geochemical Exploration 89, (2006), 318-321.

[13] Sibley D.F., Gregg J.M., “Classification of dolomite rock texture”, Journal of Sedimentary Petrology, 57 (1987) 967-975.

[14] Al- Aasm I.S., Packard J.J.,. “Stabilization of early-formed dolomite: a tale of divergence two Mississippian dolomites”, Sedimentary Geology, 131, (2000),97-108.

[15] Bjorlykke K., “Relationships between depositional environments, burial history and rock properties. Some principle aspects of diagenetic processes in sedimentary basins”, Sedimentary Geology, 301 (2014)1-14.

[16] Armenteros I., “Diagenesis of Carbonates in Continental Settings. In: Alonso-Zarza, A.M.,Tanner, L.H.(Eds.), Carbonates in Continental Settings: Geochemistry”, Diagenesis and Applications, Developments in Sedimentology 62, Elsevier, Amsterdam (1966) 62-122.

[17] Ahmad A. H., Bhat G. M., Azim Khan M. H., “Depositional environments and diagenesis of the Kuldhar and Keera Dome Carbonates (Late Bathonian-Early Callovian) of the Western India”, Journal of Asia Earth Sciences, 27,( 2006),765-778.

[18] Leonide Ph., Fournier F., Reijmer J., Vonhof H., Borgomano J., Dijk J., Rosenthal M., Geothem M., Cochard J., Meulenaars K., “Diagenetic patterns and pore space distribution along a platform to outershelf transect (Urgonian limestone, Barremian- Aptian, SE France)”, Sedimentary Geology, 306, (2014),1-23.

[19] Tucker M.E., Wright V.p., “Carbonates Sedimentology”, Blackwell. Oxford, (1990), 482pp.

[20] Sabbagh Bajestani M., Mahboubi A., Al-Aasm I., Moussavi-Harami R., Nadjafi M., “Multistage dolomitization in the Qal eh Dokhtar Formation (Middle-Upper Jurassic) Central Iran: Petrographic and geochemical evidence, Geological Journal,22-44 (Doi: 10.1002/gi.2876).

[21] Rahman M.U., Ali F., Fasisal S., KhalidS., Hussian H.S., Haq T.U., “The impact of diagenesis and dolomitization on the reservoir potential of Middle Jurassic Samana Suk Formation from Khanpur Dam section Hazara Basin, Khyber Pakhtunkhwa Pakistan”, International Journal of Economic and Environment Geology, 8(2) (2017) 40-54.

[22] Passier H.F., Middelburg J.J., de Lange G.L., Bottcher M.E., “Pyrite contents, microtextures and sulfur isotopes in relation to formation of the youngest eastern Mediterranean sapropel”, Geology, 25 (1997) 519-522.

[23] De Yoreo J., Gilbert P., Sommerdijk N., Lee Penn R., Whitelam S., D Joester D., Zhang H., Rimer J., Navrotsky A., Banfield J., Wallace A., Michel M., Meldrum F., Colfen H., Dove P., “Crystallization by particle attachment synthetic, biogenic, and geologic environments”, Science. 349 (2015) 562-574.

[24] Bindschedler S., Cailleau G., Verrecchia E., “Role of Fungi in the Biomineralization of calcite”, Minerals, 42, (2016), 1-19.

[25] Huber B., Kenneth G., Macleod David K., “Watkins Millard F and Coffin. The rise and fall of the Cretaceous Hot Greenhouse climate”, Global and Planetary Change (2018) 167, 1-23.

[26] Kanzaki Y., Murakami T., “Estimate of atmospheric CO2 in the Neoarchean- Paleoproterozoic from paleosols”, Geochimica. Cosmochimical. Acta 159 (2015) 190- 219.

[27] Sheldon N. D., “Causes and consequences of low atmospheric pCO2 in the Late Mesoproterozoic”, Chemical. Geology. 362,( 2013), 224-231.

[28] Cerling T.E., “Stable carbon isotopes in paleosol carbonates. in Thiry, M., Simm-Coincon, R., (eds), Paleoweathering, Paleosurfaces, and Related Continental Deposits”. Special Publication of the International Association of Sedimentologists 27 (1999) 43- 60.

[29] Ekart D.D., Cerling T.E., Montanez I.P., Tabor N.J., “A 400 million year carbon isotope record of pedogenic carbonate: implications for paleoatmospheric carbon dioxide”, American Journal of Science 299 (1999) 805- 827.

[30] Retallack G.J., “New transfer functions for estimating paleoproductivity in paleosols”, Proceedings of the Oregon Academy of Science, (2008), 25-46.

[31] Arens N.C., Jahren A.H., Amundson, R., “Can C3 plants faithfully record the carbon isotopic composition of atmospheric carbon dioxide? “, Paleobiology 26 (2000)137–164.

[32] Retallack G.J., “Greenhouse crises of the past 300 million years”, Geological Society of America Bulletin 121, (2009), 1441- 1455.

[33] Celeveland D.M., Nordt L.C., Atchley S, C., “Paleosols, trace fossils, and precipitation estimates of the uppermost Triassic strata in northern New Mexico”, Paleogeography, Paleoclimatology, Paleoecology, 257, (2008), 421- 444

[34] Retallack G.J., “Pedogenic carbonate proxies for amount and seasonality of precipitation in Paleosols”, Geology 33, (2005), 333–336.

[35] Thomas J.C., Cobbold E.R., Shein V.S., Le Douaran S., “Sedimentary record of late Paleozoic to Recent tectonism in central Asia -- analysis of subsurface data from the Turan and south Kazak domains”, Tectonophysics, 313, (1999) 243-263.

[36] Golonka J., “Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic”, Tectonophysics, 381 (2004) 235–273.

[37] Stampfli G., Borel G.D., “A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrones”, Earth and Planetary Science Letters, 196 (2002) 17-33.