The effect of doping Graphene Quantum Dots with K, B, N, and Cl on its emitted spectrum

Document Type : Original Article

Authors

Abstract

In this work, the effect of doping Graphene Quantum Dots (GQDs) on their emission spectra has been studied. First, graphene has been deposited on SiC substrate by using sublimation method. Second, doped-GQDs have been distributed on the surface of graphene via drop casting. The structure of the samples have been studied and characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM), and Micro-RAMAN spectrometer. Emitted spectra of the doped samples have been studied, and the results show the highest intensity is for K doped samples. The XRD pattern of epitaxial graphene on SiC, represents the structures of graphene and SiC. AFM image shows homogenous surface of epitaxial graphene grown on SiC. Reflectance mapping images obtained from Micro-RAMAN spectrometer confirms the existence of mono- and bi-layers of graphene. The SEM and AFM results show homogenous dispersion of GQDs on the substrate. Results of the emitted spectra of the samples show that by increasing doping of GQDs with B from 0.75% to 1.5% and with K from 2% to 4%, the intensities of emission spectra from GQDs have been increased. Moreover, by increasing doping with N and Cl from 2% to 4%, these emission spectra from GQDs have been decreased. Also, the peaks intensity of K doped GQDs (K-GQDs) are higher than those of B, and for N-GQDs are more than those of Cl. In general, the highest and the lowest peak is for K and Cl, respectively.

Keywords


[1] Zargar S., Poormoghadam A., Farbod M., "Fabrication and study of structural, optical and magnetic properties of Zn1-xNixO nanoparticles", Iranian Journal of Crystallography and Mineralogy 24 (2016) 309-316.

[2] Fadavieslam M.R., "Deposition and characterization of SnO2:Sb thin films fabricated by the spray pyrolysis method", Iranian Journal of Crystallography and Mineralogy 27 (2019) 739-746.

[3] Niyaifar M., "Study of magnetic properties and Mössbauer spectroscopy of Y3-xBixFe5O12 prepared by sol-gel method", Iranian Journal of Crystallography and Mineralogy 24 (2016) 109-116.

[4] Khosroabadi S., Kazemi A., "High efficiency gallium phosphide solar cells using TC-doped absorber layer", Physica E: Low-dimensional Systems and Nanostructures, 104 (2018) 116-123.

[5] Fadavieslam M.R., Kazemi A., "Influence of Ag concentration on the structure, optical and electrical properties of SnS2: Ag thin films prepared by spray pyrolysis deposition", Journal of Materials Science: Materials in Electronics, 28 (2017) 3970-3977.

[6] Geim, A.K., "Graphene: status and prospects", science 324.5934 (2009) 1530-1534.

[7] Fredrik S., Geim A.K., Morozov S.V., Hill E.W., Blake P., Katsnelson M.I., Novoselov K.S., "Detection of individual gas molecules adsorbed on graphene", Nature materials 6, 9 (2007) 652-655.

[8] Kaushik P.D., Rodner M., Lakshmi G.B.V.S., Ivanov I.G., Greczynski G., Palisaitis J., Eriksson J., Solanki P., Aziz A., Siddiqui A.M., Yakimova R., "Surface functionalization of epitaxial graphene using ion implantation for sensing and optical applications", Carbon, 157 (2020) 169-184..

[9] Kaushik P.D., Ivanov I.G., Lin P.C., Kaur G., Eriksson J., Lakshmi G.B.V.S., Avasthi D.K., Gupta V., Aziz A., Siddiqui A.M., Syväjärvi M., "Surface functionalization of epitaxial graphene on SiC by ion irradiation for gas sensing application", Applied Surface Science, 403 (2017) 707-716.

[10] Ajayan, P.M., James M.T., "Nanotube composites", Nature 447, 7148 (2007) 1066-1068.

[11] Buehler, M.J., "Nanomaterials: Strength in numbers", Nature Nanotechnology 5, 3 (2010) 172.

[12] Young-Woo S., Cohen M.L., Louie S.G., "Erratum: Energy Gaps in Graphene Nanoribbons", Physical Review Letters 98, 8 (2007) 089901.

[13] Raveendran N.R., Blake P, Grigorenko A.N., Novoselov K.S., Booth T.J., Stauber T., Peres N.M., Geim A.K., "Fine structure constant defines visual transparency of graphene", Science 320, 5881 (2008) 1308-1308.

[14] Çağlar Ö.G., Meyer J.C., Erni R., Rossell M.D., Kisielowski C., Yang L., Park C.H., Crommie M.F., Cohen M.L., Louie S.G., Zettl A., "Graphene at the edge: stability and dynamics", science 323, 5922 (2009) 1705-1708.

[15] Ritter K.A., Lyding J.W.,"The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons", Nature materials 8, 3 (2009) 235-242.

[16] Rabiee F., Ghazi M.A., Izadifar M, “Investigation of sensing properties of cobalt doped nickel-ferrite nanostructures synthesized by microwave method”, Iranian Journal of Crystallography and Mineralogy, 23 (2016) 689-698.

[17] Hasanpour A., Gharibshahi M., Niyarifar M., “Effect of cerium doping on the magnetic properties of yttrium iron garnet thin films on quartz substrates”, Iranian Journal of Crystallography and Mineralogy, 23 (2015) 469-478.

[18] Sarraf N., Hasanpour A., Hashemizade A., Akhound A., “Investigation of room temperature ferromagnetic behavior in Mn doped ZnO nanoparticles”, Iranian Journal of Crystallography and Mineralogy, 23 (2015) 383-388.

[19] Salimian S., Farjami S., “The effect of temperature and annealing on the structural properties of CdS: Mn semiconductor nanocrystals”, Iranian Journal of Crystallography and Mineralogy, 17 (2010) 621-628.

[20] Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A., "Electric field effect in atomically thin carbon films", science 306, 5696 (2004) 666-669.

[21] Li .X, Cai W., Colombo L., Ruoff R.S., "Evolution of graphene growth on Ni and Cu by carbon isotope labeling", Nano letters 9, 12 (2009) 4268-4272.

[22] Sutter P.W., Flege J.I., Sutter E.A., “Epitaxial graphene on ruthenium”, Nature materials, 7 (2008) 406-411.

[23] Lee S.M., Kim J.H., Ahn J.H., "Graphene as a flexible electronic material: mechanical limitations by defect formation and efforts to overcome", Materials Today 18, 6 (2015) 336-344.

[24] Somani P.R., Somani S.P., Umeno M., “Planer nano-graphenes from camphor by CVD”, Chemical Physics Letters, 430 (2006) 56-59.

[25] Robinson JT, Perkins FK, Snow ES, Wei Z, Sheehan PE. "Reduced graphene oxide molecular sensors", Nano letters 8, 10 (2008) 3137-3140.

[26] Berger C., Song Z., Li T., Li X., Ogbazghi A.Y., Feng R., Dai Z., Marchenkov A.N., Conrad E.H., First P.N., De Heer W.A., "Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics", The Journal of Physical Chemistry B 108, 52 (2004) 19912-19916.

[27] Berger C., Song Z., Li X., Wu X., Brown N., Naud C., Mayou D., Li T., Hass J., Marchenkov A.N., Conrad E.H., "Electronic confinement and coherence in patterned epitaxial graphene", Science 312, 5777 (2006) 1191-1196.

[28] Yakimova R., Virojanadara C., Gogova D., Syväjärvi M., Siche D., Larsson K., Johansson L.I., "Analysis of the formation conditions for large area epitaxial graphene on SiC substrates", Materials Science Forum, 645 (2010) 565-568.

[29] Suk J.W., Lee W.H., Lee J., Chou H., Piner R.D., Hao Y., Akinwande D., Ruoff R.S., "Enhancement of the electrical properties of graphene grown by chemical vapor deposition via controlling the effects of polymer residue", Nano letters 13, 4 (2013) 1462-1467.

[30] Pirkle A., Chan J., Venugopal A., Hinojos D., Magnuson C.W., McDonnell S., Colombo L., Vogel E.M., Ruoff R.S., Wallace R.M., "The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2", Applied Physics Letters 99, 12 (2011) 122108.

[31] Yazdi G.R., Vasiliauskas R., Iakimov T., Zakharov A., Syväjärvi M., Yakimova R., "Growth of large area monolayer graphene on 3C-SiC and a comparison with other SiC polytypes", Carbon 57 (2013) 477-484.

[32] Yazdi G.R., Iakimov T., Yakimova R., "Epitaxial graphene on SiC: a review of growth and characterization", Crystals 5 (2016) 53.

[33] Backes C., Abdelkader A.M., Alonso C., Andrieux-Ledier A., Arenal R., Azpeitia J., Balakrishnan N., Banszerus L., Barjon J., Bartali R., Bellani S., "Production and processing of graphene and related materials", 2D Materials 2 (2020) 022001.

[34] Monshi A., Foroughi M.R., Monshi M.R.,"Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD", World journal of nano science and engineering 3 (2012) 154-160.

[35] Ivanov I.G., Hassan J.U., Iakimov T., Zakharov A.A., Yakimova R., Janzén E., "Layer-number determination in graphene on SiC by reflectance mapping", Carbon 77 (2014) 492-500.

[36] Wang Z., Zeng H., Sun L., "Graphene quantum dots: versatile photoluminescence for energy, biomedical, and environmental applications", Journal of Materials Chemistry C. (2015) 1157-65.