دما-فشارسنجی و خاستگاه گدازه‌های آندزیتی منطقه زولسک (شمال شرق سربیشه، شرق ایران) بر پایه شیمی کانی‌ها

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زمین‌شناسی، دانشکده علوم، دانشگاه بیرجند، بیرجند، ایران

2 انستیتو علوم زمین، آکادمیا سینیکا، تایپه، تایوان

3 گروه مهندسی معدن، دانشکده عمران، معدن و شیمی، دانشگاه صنعتی بیرجند، بیرجند، ایران

چکیده

در منطقه زولسک در 11 کیلومتری شمال شرق شهرستان سربیشه در استان خراسان جنوبی، سنگ­های آتشفشانی شامل آندزیت، داسیت و ریولیت برونزد دارند که گدازه­های آندزیتی دارای بیشترین گسترش بوده و در این پژوهش بررسی شدند. بافت‌های غالب در آندزیت­ها شامل پورفیری با خمیره میکرولیتی شیشه‌ای، گلومروپورفیری و حفره‌ای هستند. کانی‌های تشکیل‌دهنده آندزیت­ها پلاژیوکلاز، پیروکسن، آمفیبول، بیوتیت و به ندرت سانیدین هستند. درشت بلور­های پلاژیوکلاز در برخی نمونه­ها منطقه­بندی نوسانی و بافت غربالی دارند و در لبه برخی بلورها، آثار خوردگی، گردشدگی و حاشیه واجذبی دیده می­شود. بر اساس نتایج تجزیه ریزکاو الکترونی، پلاژیوکلازها دارای گستره ترکیبی Ab67، An33 تاAb54، An46 بوده و از نوع آندزین هستند. درشت بلور­های کلینوپیروکسن ترکیب اوژیت مایل به دیوپسید (En39-41 Fs13-17 Wo43-47) و ارتوپیروکسن­ها ترکیب انستاتیت (En41-74 Fs13-43 Wo2-3) دارند. مقادیر Mg# در کلینوپیروکسن و ارتوپیروکسن­ به ترتیب از 75-69 و 76-56 متغیر است. دماسنجی به روش­های مختلف نشان داد که دمای تشکیل کلینوپیروکسن­ها 1150 تا 1200 درجه سانتی­گراد و دمای تشکیل ارتوپیروکسن1050 تا 1100 درجه سانتی­گراد است. فشار تشکیل کلینوپیروکسن و ارتوپیروکسن در نمونه­های مورد بررسی، کمتر از 2 کیلوبار محاسبه­ شد.    

کلیدواژه‌ها


عنوان مقاله [English]

Thermobarometry and origin of andesitic lavas in Zoolesk area based on mineral chemistry (northeast of Sarbisheh, east Iran)

نویسندگان [English]

  • Mohammadi 1
  • Chung 2
  • Nakhaei 3
  • Zarrinkoub 1
1
2
3
چکیده [English]

In Zoolesk area, about 11km northeast of Sarbisheh city in South Khorasan Province, volcanic rocks including andesite, dacite and rhyolite have cropped out where andesitic lavas have the maximum distribution and have been studied in this research.The main textures of andesites are porphyry with microlitic-glassy groundmass, glomeroporphyry and vesicular. Minerals forming andesites include plagioclase, pyroxene, amphibole, biotite and rarely sanidine. Plagioclase phenocrysts have oscillatory zoning and sieve texture and so corrosion, rounding and resorption rims can be seen in the margin of some crystals. Based on microprobe analyses, the composition of plagioclases changes from Ab67,An33to Ab54, An46 and are andesine type. Clinopyroxene phenocrysts have augite with minor diopside composition (En39-41 Fs13-17 Wo43-47) and orthopyroxenes are enstatite (En41-74Fs13-43Wo2-3). The Mg# values in clinopyroxene and orthopyroxene are variable between 69-75 and 56-76 respectively. Thermometry studies showed that the crystallization temperature of clinopyroxenes is 1150 to 1200°C and for orthopyroxene is 1050 to 1100°C. The calculated pressure for genesis of clinopyroxene and orthopyroxene in the studied samples was less than 2 kbar.

کلیدواژه‌ها [English]

  • Andesite
  • calc-alkaline
  • pyroxene
  • Thermobarometry
  • Zoolesk
  • Lut block
[1] Nazari H., Salamati R., "Geological map of Sarbisheh (1/100000)", Sheet 7955 Geological survey of Iran (1999).

[2] Karimpour M. H., Stern C. R., Farmer L., Saadat S., Malekezadeh A., "Review of age, RbSr geochemistry and petrogenesis of Jurassic to Quaternary igneous rocks in Lut Block, Eastern Iran", Geopersia 1(2011) 19–36.

[3] Jung D., Keller j., Khorasani R., Marcks C., Baumann A., Horn P., "Petrology of the Tertiary magmatic activity in the northern Lut area, est of Iran", Geological survey of Iran, Tehran, Geodynamic project (Geotraverse) in Iran51(1983)285-336.

[4] Pang K.N., Chung S.L., Zarrinkoub M.H., Khatib M.M., Mohammadi S.S., Chiu H. Y., Chu C.H., Lee H.Y., Lo C.H., "Eocene– Oligocene post- collisional magmatism in the Lut– Sistan region, eastern Iran: Magma genesis and tectonic implications", Lithos180-181(2013) 234- 251.

[5] Goodarzi M., Mohammadi S.S., Zarrinkoub M.H., "Petrography,geochemistry and tectonic setting of Salmabad Tertiary volcanic rocks, southeast of Sarbisheh, eastern Iran", Journal of Economic Geology6(2) (2014) 217-234.

[6] Malekian Dastjerdi M., Mohammadi S.S., Nakhaei M., Zarrinkoub M.H., "Geochemistry and tectonomagatic setting of Tertiary volcanic rocks of the Kangan area, northeast of Sarbisheh, southern Khorasan", Journal of Economic Geology8(2)(2016-2017) 553-568.

[7] Mohammadi S.S., Bayani R., Nakhaei M., Chung S.L., Zarrinkoub M.H., "Petrgraphy, mineral chemistry, geochemistry and tectonic setting of Tertiary volcanic rocks in Shoushk area (east of Sarbisheh), Southern Khorasan", Iranian Journal of Crystallography and Mineralogy25(1)(2017) 167-186.

[8] Baharvandi A., Mohammadi S.S., Nakhaei M., " Petrography, geochemistry and tectonic setting of Tertiary volcanic rocks in the Boshgaz area (northwest of Sarbisheh, Southern Khorasan) ", Scientific Quarterly Journal, Geosciences 27(106)(2018) 117-128.

[9] Kouchi M., Mohammadi S.S., Nakhaei M., "Geochemistry, tectonic environment and origin of Oligo-Miocene lavas in Zoolesk area, northeast of Sarbisheh (Southern Khorasan) ", Scientific Quarterly Journal, Geosciences28(110)(2019) 255-266.

[10] Putirka K.D., "Igneous thermometers and barometers based on plagioclase + liquid equilibria: Tests of some existing models and new calibrations", American Mineralogist 90 (2-3) (2005) 336–346.

[11] Köprübasi N., Güctekina A., Celebia D., Kirmaci M.Z., "Mineral chemical constraints on the petrogenesis of mafic andintermediate volcanic rocks from the Erciyes and Hasanda˘g volcanoes,Central Turkey", Chemie der Erde 74 (2014) 585–600.

[12] Kamaci Ö., Altunkaynak S., "Magma chamber processes and dynamics beneath northwestern Anatolia: Insights from mineral chemistry and crystal size distributions (CSDs) of the Kepsut volcanic complex (NW Turkey)", Journal of Asian Earth Sciences 181(2019)103889. https://doi.org/10.1016/j.jseaes.2019.103889.

[13] Nisbet E. G., Pearce J. A., "Clinopyroxene composition of mafic lavas from different tectonic settings", Contributions to Mineralogy and Petrology 63(2) (1977) 161-173.

[14] Leterrier J., Maury R. C., Thonon P., Girard D., Marchal M., "Clinopyroxene composition as method of identification of the magmatic affinities of paleo-volcanic series", Earth and Planetary Science Letters 59 (1982) 139-154.

[15] Dioh E., Beziat D., Gregoire M., Debat P., "Origin of rare earth element variations in clinopyroxene from plutonic and associated volcanic rocks from the Foulde basin, Northern Kedougou inlier, Senegal, West Africa", European Journal of Mineralogy 21(2009) 1029-1043.

[16] Mollo S., Gaudio P.D., Ventura G., IezziG., Scarlato P., "Dependence of clinopyroxene composition on cooling rate in basaltic magmas: Implications for thermobarometry", Lithos118(2010) 302-312.

[17] Putirka K.D., "Thermometers and barometers for volcanic systems", Reviews in Mineralogy and Geochemistry69(2008) 61-120.

[18] Putirka K., Johnson M., Kinzler R., Walker D., "Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0-30 kbar", Contributions to Mineralogy and Petrology 123(1996) 92-108.

[19] Nimis P., Ulmer P., "Clinopyroxene geobarometry of magmatic rocks. 1. An expanded structural geobarometer for anhydrous and hydrous, basic and ultrabasic systems", Contributions to Mineralogy and Petrology 133 (1998) 122-135.

[20] Cheng Z., Guo Z., Dingwell D.B., Li X., Zhang M., Liu J., Zhao W., Lei M., "Geochemistry and petrogenesis of the post-collisional high-K calc-alkaline magmatic rocks in Tengchong, SE Tibet", Journal of Asian Earth Sciences193(2020) 104309. https://doi.org/10.1016/j.jseaes.2020.104309.

[21] Martel C., Radadi Ali A., Poussineau S., Gourgaud A., Pichavant M., "Basalt inherited microlites in silicic magmas: evidence from Mount Pelée (Martinique, French West Indies) ", Geology 34 (11)( 2006) 905-908.

[22] Humphreys M.C., Blundy J.D., Sparks R.S., "Magma evolution and open-system processes at Shiveluch volcano: insights from phenocryst zoning", Journal of Petrology 47(2006) 2303–2334.

[23] Shane P., Cocker K., Coote A., Stirling C.H., Reid M.R., "The prevalence of plagioclase antecrysts and xenocrysts in andesite magma, exemplified by lavas of the Tongariro volcanic complex, New Zealand", Contributions to Mineralogy and Petrology 174 (11)( 2019) 89. https://doi.org/10.1007/s00410-019-1626-y.

[24] Viccaro M., Barca D., Bohrson W.A., D'Oriano C., Giuffrida M., Nicotra E., Pitcher B.D., "Crystal residence times from trace element zoning in plagioclase reveal changes in magma transfer dynamics at Mt. Etna during the last 400 years", Lithos248-251(2016) 309-323.

[25] Tepley F.J., Davidson J.P., Clynne M.A., "Magmatic interactions as recorded in plagioclase phenocrysts of Chaos Crags,Lassen volcanic center, California", Journl of Petrology 40 (5)(1999) 787–806.

[26] Whitney D., Evans B., "Abbreviations for names of rock-forming minerals", American Mineralogist 95(2010)185–187.

[27] Deer W.A., Howie R.A., Zussman J., "An introduction to the rock forming minerals", Longman Scientific and Technical) 1991(528 P.

[28] Davidson J.P., Morgan D.J., Charlier B.L.A., Harlou R., Hora J.M., "Microsampling and isotopic analysis of igneous rocks: implications for the study of magmatic systems", Annual Review of Earth and Planetary Sciences 35(2007) 273-311.

[29] Lange R.A., Frey H.M., Hector J., "A thermodynamic model for the plagioclase-liquid hygreometer/thermometer", American Mineralogist 94(2009) 494–506.

[30] Ustunisik G., Kilinc A., Nielsen R.L., "New insights into the processes controlling compositional zoning in plagioclase", Lithos 200–201(2014) 80–93.

[31] Waters L.E., Lange R.A., "An updated calibration of the plagioclase-liquid hygrometer-thermometer applicable to basalts through rhyolites", American Mineralogist 100(2015) 2172–2184.

[32] Beccaluva L., Macciotta G., Piccardo G. B., Zeda O., "Clinopyroxene composition of ophiolite basalts as petrogenetic indicator", Chemical Geology 77(1989) 165-182.

[33] Soesoo A., "A multivariate statistical analysis of clinopyroxene composition: empirical coordinates for the crystallisation PT estimations", Geological Society of Sweden (Geologiska Föreningen)119 (1997) 55-60.

[34] Morimoto N., Fabries J., Ferguson A.K., Ginzburg I. V., Ross M., Seifert F. A., Zussman J., Aoki K., Gottardi G., "Nomenclature of pyroxenes", Mineralogical Magazine 52 (1988) 535-550.

[35] Morimoto N., Fabries J., Ferguson A.K., Ginzburg I. V., Ross M., Seifert F. A., Zussman J., Aoki K., Gottardi G., "Nomenclature of pyroxenes", Mineralogical Journal 14(5)(1989) 198-221.

[36] Le Bas M. J., "The role of aluminum in igneous clinopyroxenes with relation to their parentage", American Journal of Science 260(4) (1962) 267-288.

[37] Schneider M. E., Eggler D. H., "Fluids in equilibrium with peridotite minerals: implications for mantle metasomatism", Geochimica et Cosmochimica Acta 50(1986) 711-724.

[38] Janoušek V., Holub F.V., Verner K., Čopjaková R., Gerdes A., Hora J.M., Košler J., Tyrrell S., "Two-pyroxene syenitoids from the Moldanubian Zone of the Bohemian Massif: peculiar magmas derived from a strongly enriched lithospheric mantle source", Lithos342-343(2019) 239-262.

[39] Shiaian K., Dabiri R., "Chemistry of mafic minerals and thermobarometry of Bazman Quaternary volcanic rocks", Quaternary Journal of Iran5(2) 205-220.

[40] Lindsley D.H., "Pyroxene thermometry", American Mineralogist68 (1983) 477-493.

[41] Sayari M., Sharifi M., "SCG: A computer application for single clinopyroxene geothermobarometry", Italian Journal of Geosciences 133(2)( 2014) 315-322.

[42] Nimis P., Taylor W.R., "Single clinopyroxen thermobarometry for garnet peridotites. Part1. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer", Contributions to Mineralogy and Petrology139(2000) 541-554.

[43] Nickel K.G., Brey G.P., Kogarko L., "Orthopyroxene-clinopyroxene equilibria in the system CaO-MgO-Al2O3-SiO2 (CMAS): New experimental results and implications for two-pyroxene thermometry", Contributions to Mineralogy and Petrolgy 91(1985)44–53.

[44] Moretti R., "Polymerization, basicity, oxidation state and their role in ionic modelling of silicate melts", Geophysics 48 (2005) 583-608.

[45] Schweitzer E. L., Papike J. J., bence A. E., "Statitical analysis of clinopyroxenes from deepsea basalts", American Mineralogist 64 (1979) 501-513.

[46] Mahood G.A., Baker D.R., "Experimental constraints on depths of fractionation of mildly alkalic basalts and associated felsic rocks: Pantelleria, strait of Sicily", Contributions to Mineralogy and Petrology93(2)( 1986) 251–264.

[47] Aoki K., Shiba I., "Pyroxene from lherzolite inclusions of Itinomegata, Japan", Lithos 6(1)( 1973) 41-51.

[48] Helz R.T., "Phase relations of basalts in their melting ranges at pH2O=5 kb as a function of oxygen fugacity, Part I, Mafic phases", Journal of Petrology14(2)( 1973) 249-302.