دما فشارسنجی و شیمی کانی لامپروفیرهای پرموتریاس ایران مرکزی در منطقه چاهریسه، شمال شرق اصفهان

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه زمین‌شناسی، دانشکده علوم، دانشگاه اصفهان، اصفهان، ایران

چکیده

سنگ­های ماگمایی چاهریسه در شمال شرق اصفهان، در پهنه ساختاری سنندج-سیرجان و  موازی با گسل قم-زفره قرار دارند. این توده­های ماگمایی در یک مقطع پیوسته از رسوب های پرمین-تریاس واقع هستند و به ندرت وارد لایه­های آغازین تریاس می­شوند. این سنگ­ها دربردارنده کانی­های فرومنیزین بدون آب (الیوین، کلینوپیروکسن و پلاژیوکلاز) کانی­های فرومنیزین آبدار (آمفیبول و بیوتیت) و همچنین کانی­های دگرسان (کلریت، اپیدوت و اکتینولیت) هستند. بر اساس بررسی­های سنگ­نگاری و تجزیه شیمیایی کانی­ها، این سنگ­های ماگمایی در رده لامپروفیرهای فرامافیک با ماهیت قلیایی قرار دارند. روش­های مختلف دما-فشارسنجی کانی­ها دو گستره کاملا متفاوت فشار و دما (دمای 1000 تا 1100 درجه سانتی­گراد و فشار 16 تا 20 کیلوبار و نیز دمای 900 تا 1000 درجه سانتی­گراد و فشار 6 تا 13 کیلوبار) را نشان می­دهد که با بافت پورفیری سنگ­ها همخوانی دارد. ویژگی­های شیمیایی کانی­های اولیه­ی سنگ بیانگر تشکیل و جایگیری لامپروفیرهای قلیایی در محیط درون قاره­ای هستند. از دیگر سو، وجود بیگانه سنگ­ها و بیگانه بلورهای فلسی پوسته­ای شواهدی از اثر آلایش پوسته­ای را ارائه می­دهند. بنابراین، به نظر می­رسد که در فاصله زمانی کوتاه از پایان پالئوزوییک تا آغاز مزوزوییک در پی عملکرد فاز زمین ساختی هرسینین، لامپروفیرهای قلیایی در یک محیط قاره­ای تشکیل شده و طی صعود به سطح زمین بخش­هایی از پوسته­ی قاره­ای را در خود هضم کرده­اند.      

کلیدواژه‌ها


عنوان مقاله [English]

Thermobarometry and mineral chemistry of Central Iran Permo-Triassic lamprophyres in Chahrisseh Region, northeast Isfahan

نویسندگان [English]

  • Tabatabaei manesh
  • Veysi
چکیده [English]

Chahrisseh magmatic rocks are located in the northeast Isfahan, in the Sanandaj-Sirjan structural zone and parallel to the Qom-Zefre fault. These magmatic masses are located in a continuous section of Permian-Triassic sediments and rarely enter the Early Triassic beds. These rocks contain anhydrous ferromagnesium minerals (olivine, clinopyroxene and plagioclase), hydrous ferromagnesium minerals (amphibole and biotite) in addition to secondary minerals (chlorite, epidote and actinolite). Based on petrographic studies and geochemical analysis of minerals, these magmatic rocks are among the ultramafic lamprophyres with alkaline nature. Different methods of temperature-barometry of minerals show two completely different ranges of pressure and temperature (the first range of temperature 1000 to 1100 ° C and pressure 16 to 20 kbar and the second range of temperature 900 to 1000 ° C and pressure 6 to 13 kbar) which corresponds to the porphyric texture of the rocks. The chemical properties of primary minerals indicate the formation and placement of alkaline lamprophyres in the intercontinental environment. On the other hand, the presence of crustal xenoliths and xenocrysts provides evidence of the effect of crustal contamination. Therefore, it seems that in the short period of time from the end of the Paleozoic to the beginning of the Mesozoic, following the operation of the technical phase of Hercinian, alkaline lamprophyres form in a continental environment and digested parts of the continental crust during ascending to the earth's surface.

کلیدواژه‌ها [English]

  • Thermobarometry
  • Lamprophyre
  • Permo-tTriassic
  • alkaline
  • Chahriseh
  • Isfahan
  • Central Iran
[1] Von Gümbel C. W., “Die paläolithischen eruptivgesteine des fichtelgebirges”, Franz, München (1874).

[2] Streckeisen A., “Classification and nomenclature of volcanic rocks, Lamprophyres, carbonatites and melilitic rocks”, Geology Magazine (7) (1980) 331-335.

[3] Rock N. M. S., “Lamprophyres”, Blackie, Glasgow (1991).

[4] Mitchell J. G., Roberts D., “Ages of lamprophyres from Ytteroy and Lerkehaug, near Steikjer”, central Norwegian Caledonides. Norsk Geologisk Tidsskrift (66) (1986) 255-262.

[5] Torabi G., “Late Permian lamprophyric magmatism in north-east of Isfahan province, a mark of rifting in the Gondwana land”, Comptes Rendus Geoscience 341 (2009) 85-94.

[6] Gill R., “Igneous rocks and processes, a practical guide”, 1st Edition, Blackwell Publishing, Oxford (2010).

[7] Krmíček L., “Pre-Mesozoic lamprophyres and lamproites of the Bohemian massif. In: Amprophyres and related mafic hypabyssal rocks (Eds. Awdankiewicz, M. and Awdankiewicz, H.)”, Special Papers, 37: 37-46. Mineralogia.

[8] Ghaderi A., Ashouri A.R., Korn D., Mahmoudi Gharaie M.H., Leda L., “New insight on Stratigraphic correlation of the Permian-Triassic transitional beds in the Transcaucasus and northwest of Iran: Problems and guidelines”, Sedimentary Facies, 5 (2) (2012) 221-246.

[9] Andreichev V.L., Ronkin Y.L., Lepikhina O.P., Litvinenko A.F., “Isotopic age of the Permian-Triassic basaltic magmatism in the Polar Cis-Urals: Rb-Sr and Sm-Nd data”, Stratigraphy and Geological Correlation, v.15 (2007) p.258–266.

[10] Castillo P., Fanning C.M., Hervé F., Lacassie J.P., “Characterisation and tracing of Permian magmatism in the south-western segment of the Gondwananmargin; U–Pb age, Lu–Hf and O isotopic compositions of detrital zircons from metasedimentary complexes of northern Antarctic Peninsula and western Patagonia”, Gondwana Research v.36 (2016) p.1–13.

[11] Dobresov N.L., “The Asian’s large igneous provinces (250Ma): Siberian’s and Emeishan’s traps (plateau-basalts) and associated granitoids. Geol Geophys v.46(9), (2005) p.870–890.

[12] Georgiev S., Balkanska E., Gerdjikov I., “Evidence for Permian-Triassic acid magmatism in the Central Balkanides”, GEOSCIENCES (2013).

[13] Hoa T.T., Anh T.T., Dung P.T., Ching-Ying L., Tadashi U., Polyakov G.V., Izokh A.E., “Permian plume-related magmatic associations in the Song Da – Tu Le rift system and Phan Si Pan uplift, Northwest Vietnam. Extend. Abstract volume of international symposium large igneous provinces of Asia: mantle plume and metallogeny”, LIPs, Hanoi, (2013) p. 57–61.

[14] Izokh A.E., Polyakov G.V., Tran Trong Hoa, Balykin P.A., Ngo Thi Phuong, “Permian-Triassic ultramafic-mafic magmatism of Northern Vietnam and Southern China as expression of plume magmatism”, Russ Geol Geophys, v.46 (9) (2005) p. 942–951.

[15] Kim S.W., Kwon S. Koh H.J., Yi.K. Jeong Y.J. Santosh M., “Geotectonic framework of Permo–Triassic magmatism within the Korean Peninsula”, Gondwana Research, v. 20 (2011) p. 865–889.

[16] Kwon S., Sajeev K., Mitra M., Park Y., Kim S.W., Ryu I.C,, “Evidence for Permo-Triassic collision in Far East Asia: The Korean collisional orogeny”, Earth and Planetary Science Letters v. 279, (2009) p. 340–349.

[17] Orolmaa D., Erdenesaihan G., Borisenko A.S., Fedoseev G.S., Babich V.V., Zhmodik S.M., “Permian-Triassic granitoid magmatism and metallogeny of the Hangayn (central Mongolia)”, Russian Geology and Geophysics .v.49 (2008) p. 534-544.

[18] Anh T.V., Pang K.N., Chung S.L., Lin H.M., Tran Trong Hoa, Tran Tuan Anh, Yang H.J., “The Song Da magmatic suite revisited: A petrologic, geochemical and Sr-Nd isotopic study on picrites, flood basalts and silicic volcanic rocks”, Journal of Asian Earth Sciences, 42 (6) (2011) 1341-1355.

[19] Bahrami A., Yazdi M., “Geological map of Kouhpaye region”, (2018).

[20] Ghobadipour M., “Microstratigraphy Of Late Permian Depositional Sequence In Northeastern Isfahan (Chahriseh area)”, Dissertation, Shahid Beheshti university, 120p (2006).

[21] Shirani bidabadi M., “Lithostratigraphic and biostratigraphic correlations of deposits in Hambast-Shahreza and Chahrisseh regions based on microfossils and macrofossils, MSc. Thesis On Stratigraphy”, university of Isfahan, 112p (2006).

[22] Zahedi M., “Explanatory text of the Isfahan Quadrangle map: 1/250000”, Geological Survey of Iran, F8:1-49. Tehran (1976).

[23] Poldervaart A., Hess H.H., “Pyroxene in the crystallization of basaltic magma”, Journal of Geology, 59 (1951) 472-489.

[24] Nachit H., Ibhi A.B., Abia El.-H., Ben Ohoud M., “Discrimination between primary magmatic biotites, reequilibrated biotites, and neoformed biotites”, Comptes Rendus Géoscience, v. 337 (2005) p. 1415–1420.

[25] Foster M., “Interpretation of the composition of Trioctahedral Micas”, Geological survey professional (1960).

[26] Mitchel R.H, Bergman S.C., “Petrology of lamproites”, Plenum Press. NewYork, 447pp (1991).

[27] Leake B.E., Woolley A. R., Arps C.E.S., Birch W.D., Gilbert M.C., Grice J.D., Hawthorne F.C., Kato A., Mandarino J.A., Maresch W.V., Nikel E.H., Rock N.M.S., Schumacher J.C., Smith D.C, Stephenson N.C.N., Ungaretti L., Whittaker E.J.W., Youzhi G., “Nomenclature of amphibole: Report of the Subcommittee on Amphibole of the International Mineralogical Association, Commission on New Mineral and Mineral Name”, American Mineralogist, 82 (1997)1019-1037.

[28] Deer W. A., Howie R. A., Zussman J., “An introduction to rock forming minerals”, Longman (1991).

[29] Pietranik A., Koepke J., Puziewicz J., “Crystallization and resorption in plutonic plagioclase: Implications on the evolution of granodiorite magma (Gesiniec granodiorite, Strzelin Crystalline Massif, SW Poland)”, Lithos, 86 (2006) 260–280.

[30] Stoppa F., Rukhlov A.S., Bell K., Schiazza M., Vichi G., “Lamprophyres of Italy: early cretaceous alkaline lamprophyres of Southern Tuscany”, Italy. Lithos 188 (2014) 97e112.

[31] Dawson J.B., Smith, J.V., “The MARID (micaeamphiboleerutileeilmeniteediopside) suite of xenoliths in kimberlite”, Geochimica ET Cosmochimica Acta 41 (1977) 309e323.

[32] Gibson S.A., Thompson R.N., Leonardos O.H., Dickin A.P., Mitchel J.G., “The Late Cretaceous impact of the Trindade mantle plume: evidence from largevolume, mafic, potassic magmatism in SE Brazil”, Journal of Petrology 36, (1995) 189e229.

[33] Nisbet E. G., Pearce J. A., “Clinopyroxene composition of mafic lavas from different tectonicsettings”, Contributions to Mineralogy and Petrology 63 (1977) 161-173.

[34] Coltorti M., Bonadiman C., Faccini B., Grégoire M. O., Reilly S. Y., Powell W., “Amphiboles from suprasubduction and intraplate lithospheric mantle”, Lithos, 99 (2007) 68-84.

[35] Lindsley D. H., “Pyroxene thermometry”, American Mineralogist, v. 68 (1983) p. 477-49.

[36] Schmidt M.W., “Amphibole composition in tonalite as a function of pressure: An experimental calibration of the AI-in-hornblende barometer”, Contributions to Mineralogy and Petrology, 110 (1992) 304-310.

[37] Ernst W. G., Liu J., “Experimental phase equilibrium study of Al- and Ti-contents of calcic amphibole in MORB- A semiquantitative thermobarometer”, America Mineralogist. 83 (1998) 952- 969.



[38] Henry D. J., Guidotti C. V., Thomson J. A., “The Ti-saturation surface for low-to-medium pressure metapelitic biotite: Implications for Geothermometry and Ti-substitution Mechanisms”, American Mineralogist 90 (2005) 316-328.

[39] Putirka K. D., “Thermometers and Barometer for Volcanic Systems”, Reviews in Mineralogy & Geochemistry, 69 (2005) 61-120.

[40] Blundy J.D., Wood B.J., “Crystal-chemical controls on the partitioning of Sr and Ba between plagioclase feldspar, silicate melts, and hydrothermal solutions”, Geochimica et Cosmochimica Acta, 55:193–209.

[41] Smith V.C., Blundy J.D., Arce J.L., “A temporal record of magma accumulation and evolution beneath Nevado deToluca, Mexico, preserved in plagioclase phenocrysts”, Journal of Petrology, 50 (2009) 405-426.

[42] Putirka K.D., “Excess temperatures at ocean islands: implications for mantle layering and convection”, Geology, 36 (2008) 283-286.

[43] Housh T.B., Luhr J.F., “Plagioclase-melt equilibria in hydrous systems”, American Mineralogist, 76 (1991) 477–492.

[44] Beattie P., “Olivine-melt and orthopyroxene-melt equilibria”, Contrib Mineral Petrol, 115 (1993)103-111.

[45] Ridolfi F., Renzulli A., Puerini M., “Stability and chemical equilibrium of amphibole in calcalkaline magmas: an overview, new thermobarometric formulations and applications to subduction-related volcanoes”, Contributions to Mineralogy and Petrology, 160 (2010) 45-66.

[46] Hammarstrom J.M., Zen E., “Aluminum in Hornblende; an Empirical Igneous Geobarometer”, American Mineralogist, 71 (1986) 1297-1313.

[47] Anderson J.L., “Status of thermobarometry in granitic batholiths trans royal soc Edinburgh”, Earth Sci., 87 (1996) 125-138.

[48] Rock N. M. S., “The nature and origin of lamprophyres: an overview. In Fitton J. G. & Upton B. G. J. (eds.) Alkaline Igneous Rocks. Geological Society”, London, Special Publication 30, (1987) pp. 191–226.