Petrology and geochemistry of amphibolites from northwest of Salmas, NW Iran

Document Type : Original Article

Authors

Abstract

Amphibolites crop out in the NW Salmas as two relatively small bodies around Abati and Ureban villages. Based on petrography and mineral paragenesis, the composition of Abati and Ureban amphibolites consists mainly of epidote amphibolite and amphibolite, respectively. Relict of clinopyroxenes from a parental rock are present in some samples. Mineral paragenesis (high hornblende and plagioclase and low quartz content) along with whole rock chemistry of the NW Salmas amphibolites show that the protolith was a basaltic composition with calc-alkaline to tholeiitic affinities. The original magmas of the NW Salmas amphibolites were not primary, and the composition of magmas has been modified by fractional crystallization and crustal contamination during ascending and emplacement. According to the discrimination and multi-element diagrams patterns (enrichment of LILEs in comparison with HFSEs and the negative anomaly of Nb and Zr), the parental magmas of the NW of Salmas amphibolites were generated in subduction-related tectonic settings.

Keywords


[1] Bucher K., Frey M., “Petrogenesis of Metamorphic Rocks (6th edn)”, Springer Verlag: Berlin, 1994; p 318.

[2] Munyanyiwa H., Hanson R. E., Blenkinsop T. G., Treloar P. J., “Geochemistry of amphibolites and quartzofeldspathic gneisses in the Pan-African Zambezi belt, northwest Zimbabwe: evidence for bimodal magmatism in a continental rift setting”, Precambrian Research 81 (3) (1997) 179-196.

[3] Zhou Y., Zhao T., Sun Q., Zhai M., “Geochronological and geochemical constraints on the petrogenesis of the 2.5-2.6  Ga amphibolites, low- and high-Al TTGs in the Wangwushan area, southern North China Craton: Implications for the Neoarchean crustal evolution”, Precambrian Research 307 (2018) 93-114.

[4] Faridazad M., Moayyed M., Modjtahedi M., Moazzen M., “Petrology and petrogenesis of Amphibolitic rocks of the Khoy ophiolitic complex-NW Iran”, Iranian Journal of Crystallography and Mineralogy 18 (2) (2010) 233-246.

[5] Balaghi Einalou M., Sadeghian M., Ghasemi H., “Mineralogy, geochemistry and thermobarometry of garnet-amphibolites in Delbar metamorphic complex, Biarjmand (Southeast of Shahrood)”, Iranian Journal of Crystallography and Mineralogy 23 (3) (2015) 479-494.

[6] Javanmard M. R., Nasrabady M., Gholizadeh, K., “Mineralogy, geochemistry and tectonic setting of metabasites from Gasht metamorphic complex (west Rasht)”, Iranian Journal of Crystallography and Mineralogy 24 (2) (2016) 243-258.

[7] Zhu C. Y., Zhao G., Sun M., Eizenhöfer P. R., Liu Q., Zhang X., Han Y., Hou W., “Geochronology and geochemistry of the Yilan greenschists and amphibolites in the Heilongjiang complex, northeastern China and tectonic implications”, Gondwana Research 43 (2017), 213-228.

[8] Ahmadi khalaji A., Safarzadeh M., Tahmasbi Z., Sepahvand F., Zarei Sahamieh R., “Mineral chemistry, Geohemistry and mineral chemistry of the amphibolites in the northeast of Dorud (Lorestan province)”, Iranian Journal of Crystallography and Mineralogy 25 (1) (2017) 95-110.

[9] Hajighorbani S., Nasrabady M., Jamshidibadr M., Davoudi Z., “Mineralogy, geochemistry and tectonic setting of amphibolites from Mahmoudabad metamorphic complex (SE Shahindezh)”, Iranian Journal of Crystallography and Mineralogy 26 (3) (2018) 733-750.

[10] Hosseini S. M., Davoudian Dehkordi A., Shabanian Borojeni N., Azizi H., “Mineralogy, geochemistry and petrogenesis of protolith of amphibolites from the North east of Yan-Cheshmeh, South east of Zayandeh-rud lake”, Iranian Journal of Crystallography and Mineralogy 27 (1) (2019) 19-30.

[11] Pearce J. A., “Statistical Analysis of Major Element Patterns in Basalts”, Journal of Petrology 17 (1) (1976) 15-43.

[12] Farahat E. S., “Geotectonic significance of Neoproterozoic amphibolites from the Central Eastern Desert of Egypt: A possible dismembered sub-ophiolitic metamorphic sole”, Lithos 125 (1) (2011) 781-794.

[14] Whitney D., B. Evans, “Abbreviations for Names of Rock-Forming Minerals”, American Mineralogist. 95 (2010) 185-187.

[14] Emami M. H., Sadeghi M. M., Omrani S. J., “Magmatic map of Iran, 1/1000000”, Geological Survey of Iran (1993).

[15] Khodabandeh A. A., Soltanni G. A., Sartipi A. H., Emami M. H., “Geological map of Iran, 1:100,000 series sheet Salmas”, Geological Survey of Iran, Tehran (2002).

[16] Polat A., Hofmann A. W., “Alteration and geochemical patterns in the 3.7–3.8 Ga Isua greenstone belt, West Greenland”, Precambrian Research 126 (3) (2003) 197-218.

[17] Kakar M., Mahmood K., Khan M., Plavsa D., “Petrology and geochemistry of amphibolites and greenschists from the metamorphic sole of the Muslim Bagh ophiolite (Pakistan): implications for protolith and ophiolite emplacement”, Arabian Journal of Geosciences 8 (2015) 6105–6120.

[18] Leake B. E., “The Chemical Distinction Between Ortho- and Para-amphibolites”, Journal of Petrology 5 (2) (1964) 238-254.

[19] Winchester J. A., Park R. G., Holland J. G., “The geochemistry of Lewisian semipelitic schists from the Gairloch District, Wester Ross”, Scottish Journal of Geology 16 (2-3) (1980) 165-179.

[20] Winchester J. A., Floyd P. A., “Geochemical discrimination of different magma series and their differentiation products using immobile elements”, Chemical Geology 20 (1977) 325-343.

[21] Floyd P. A., Winchester J. A., “Magma type and tectonic setting discrimination using immobile elements”, Earth and Planetary Science Letters 27 (2) (1975) 211-218.

[22] Miyashiro A., “Volcanic rock series in island arcs and active continental margins”, American Journal of Science 274 (4) (1974) 321-355.

[23] Hastie A. R., Kerr A. C., Pearce J. A., Mitchell S. F., “Classification of Altered Volcanic Island Arc Rocks using Immobile Trace Elements: Development of the Th–Co Discrimination Diagram”, Journal of Petrology 48 (12) (2007) 2341-2357.

[24] Dong Y., Ge W. C., Yang H., Liu X. W., Bi J. H., Ji Z., Xu W. L., “Geochemical and SIMS U-Pb rutile and LA–ICP–MS U-Pb zircon geochronological evidence of the tectonic evolution of the Mudanjiang Ocean from amphibolites of the Heilongjiang Complex, NE China”, Gondwana Research 69 (2019) 25-44.

[25] Wang W. L., Aitchison J. C., Lo C. H., Zeng Q. G., “Geochemistry and geochronology of the amphibolite blocks in ophiolitic mélanges along Bangong-Nujiang suture, central Tibet. Journal of Asian Earth Sciences” 33 (1), (2008), 122-138.

[26] Cai Y., Wang Y., Cawood P. A., Fan W., Liu H., Xing X., Zhang Y., “Neoproterozoic subduction along the Ailaoshan zone, South China: Geochronological and geochemical evidence from amphibolite”, Precambrian Research 245, (2014), 13-28.

[27] Sun S. S., McDonough W. F., “Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes”, Geological Society, London, Special Publications, 42 (1) (1989) 313-345.

[28] Lázaro C., Blanco-Quintero I. F., Marchesi C., Bosch D., Rojas-Agramonte Y., García-Casco A., “The imprint of subduction fluids on subducted MORB-derived melts (Sierra del Convento Mélange, Cuba)”. Lithos 126 (3), (2011), 341-354.

[29] Zheng Y. F., “Subduction zone geochemistry”, Geoscience Frontiers 10 (4), (2019), 1223-1254.

[30] Jahn B. M., Wu F., Lo C.-H., Tsai C. H., “Crust–mantle interaction induced by deep subduction of the continental crust: geochemical and Sr–Nd isotopic evidence from post-collisional mafic–ultramafic intrusions of the northern Dabie complex, central China”, Chemical Geology 157 (1) (1999) 119-146.

[31] Gill J. B., “Orogenic Andesites and Plate Tectonics”, Springer Verlag: Berlin (1981) 390.

[32] Hofmann A. W., Jochum K. P., Seufert M., White W. M., “Nb and Pb in oceanic basalts: new constraints on mantle evolution”, Earth and Planetary Sciencce Letters 79 (1986) 33-45.

[33] Sorensen S. S., Grossman J. N., Perfit M. R., “Phengite-hosted LILE Enrichment in Eclogite and Related Rocks: Implications for Fluid-Mediated Mass Transfer in Subduction Zones and Arc Magma Genesis”, Journal of Petrology 38 (1) (1997) 3-34.

[34] Miller D. M., Goldstein S. L., Langmuir C. H., “Cerium/lead and lead isotope ratios in arc magmas and the enrichment of lead in the continents”, Nature 368 (6471) (1994) 514-520.

[35] Lee K. S., Chang H. W., “Geochemistry and Sr-Nd-Pb isotopic systematics of the Ogcheon amphibolites from the central Ogcheon Belt, Korea: Implication for the source heterogeneity”, Geochemical Journal 31 (4) (1997) 223-243.

[36] Stern R. A., Syme E. C., Lucas S. B., “Geochemistry of 1.9 Ga MORB- and OIB-like basalts from the Amisk collage, Flin Flon Belt, Canada: Evidence for an intra-oceanic origin”, Geochimica et Cosmochimica Acta 59 (15) (1995) 3131-3154.

[37] Rudnick R. L., Fountain D. M., “Nature and composition of the continental crust: a lower crustal perspective”, Reviews of Geophysics 33 (1995) 267-309.

[38] Zhao J. H., Zhou M. F., “Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China): Implications for subduction-related metasomatism in the upper mantle”, Precambrian Research 152 (1) (2007) 27-47.

[39] Gaetani G. A., “The influence of melt structure on trace element partitioning near the peridotite solidus”, Contributions to Mineralogy and Petrology 147 (5) (2004) 511-527.

[40] Downes H., Seghedi I., Szakacs A., Dobosi G., James D. E., Vaselli O., Rigby I. J., Ingram G. A., Rex D., Pecskay Z., “Petrology and geochemistry of late Tertiary/Quaternary mafic alkaline volcanism in Romania”, Lithos 35 (1) (1995) 65-81.

[41] Jenner G. A., Cawood P. A., Rautenschlein M., White W. M., “Composition of back-arc basin volcanics, Valu Fa Ridge, Lau Basin: Evidence for a slab-derived component in their mantle source”, Journal of Volcanology and Geothermal Research 32 (1) (1987) 209-222.

[42] Pearce J. A., Norry M. J., “Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks”, Contributions to Mineralogy and Petrology 69 (1979) 33-47.

[43] Li Y., Brouwer F. M., Xiao W., Wang K.L., Lee Y.H., Luo B., Su Y., Zheng J., “Subduction-related metasomatic mantle source in the eastern Central Asian Orogenic Belt: Evidence from amphibolites in the Xilingol Complex, Inner Mongolia, China”, Gondwana Research 43(2017) 193-212.

[44] Langmuir C. H., Vocke R. D., Hanson G. N., Hart S. R., “A general mixing equation with applications to Icelandic basalts”, Earth and Planetary Science Letters 37 (3) (1978) 380-392.

[45] Aldanmaz E., Pearce J. A., Thirwali M. F., Mitchel J. G., “Petrogenetic evolution of late Cenozoic post-collision volcanism in western Anatolia, Turkey”, Journal of Volcanology and Geothermal Research 102 (2000) 67-95.

[46] Caulfield J. T., Turner S. P., Dosseto A., Pearson N. J., Beier C., “Source depletion and extent of melting in the Tongan sub-arc mantle”, Earth and Planetary Science Letters 273 (3) (2008) 279-288.

[47] Pearce J. A., “Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust”, lithos 100 (2008) 14-48.

[48] Pearce J. A., Role of the subcontinental lithosphere in magma genesis at active continental margines.In: Continental basalts and mantle xenoliths (eds). Nantwich UK Shiva: 1983.

[49] Müller D., Groves D., “Potassic Igneous Rocks and Associated Gold-Copper Mineralization”, 2nd edn, Springer, Berlin, Heidberg, New York. 1997.

[50] Pearce J. A., “Trace element characteristics of lavas from destructive plate boundaries”, Thorpe RS (ed) Andesites. John Wiley and sons: New York (1982).

[51] Sun S.-S., Nesbitt R. W., “Geochemical regularities and genetic significance of ophiolitic basalts”, Geology 6 (11) (1978) 689-693.

[52] Shervais J. W., “Ti-V plots and petrogenesis of modern and ophiolitic lavas”, Earth and Planetary Sciencce Letters 59 (1982), 101-118.

[53] Saccani E., “A new method of discriminating different types of post-Archean ophiolitic basalts and their tectonic significance using Th-Nb and Ce-Dy-Yb systematics” Geoscience Frontiers 6 (4) (2015) 481-501.

[54] Wood D. A., “The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province”, Earth and Planetary Sciencce Letters 50 (1980) 11-30.

[55] Förster H., “Mesozoic–Cenozoic metallogenesis in Iran”, Journal of the Geological Society 135 (4) (1978) 443-455.

[56] Moazzen M., “Protolith nature and tectonomagmatic features of amphibolites from the Qushchi Area, West Azerbaijan, NW Iran” Bulletin Of The Mineral Research and Exploration 149 (2014) 139-152.

[57] Moazzen M., Oberhansli R., “Whole rock and relict igneous clinopyroxene geochemistry of ophiolite-related amphibolites from NW Iran – Implications for protolith nature”, N. Jb. Miner. Abh. 185(1) (2008) 51-62.

[58] Azizi H., Moinevaziri H., Noghreayan M., “Geochemistry of metabasites rocks in the north of Khoy”, Journal of Sciece (in Farsi) 15 (2002) 1-20.

[59] Azizi H., Moinvaziri H., Smaeili K., “Geothermobarometry and determination type of metamorphism in the amphibolites of the north and north- west of Khoy on the basis of amphibole chemistry”, Iranian Journal of Crystallography and Mineralogy 11 (2) (2003) 149-163.

[60] Azizi H., Moinevaziri H., Mohajjel M., Yagobpoor A., “PTt path in metamorphic rocks of Khoy region (northwest Iran) and their tectonic significance for Cretaceous- Tertiary continental collision”, Journal of Asian Earth Siences 27 (2006) 1-9.

[61] Azizi H., Chung S. L., Tanaka T., Asahara Y., “Isotopic dating of the Khoy metamorphic complex (KMC), northwestern Iran: A significant revision of the formation age and magma source”, Precambrian Research 185 (3) (2011) 87-94.

[62] Hajialioghli R., Fakharinezhad H., Moazzen M., “Petrology and geochemistry of amphibolites from Southeast of Siyah- Cheshmeh, NW Iran” Geosciences 25 (2016) 111-122.

[63] Ghazi A. M., Pessagno E. A., Hassanipak A. A., Kariminia S. M., Duncan R. A., Babaie H. A., “Biostratigraphic zonation and 40Ar–39Ar ages for the Neotethyan Khoy ophiolite of NW Iran”, Palaeogeography, Palaeoclimatology, Palaeoecology 193 (2) (2003) 311-323.