[1] Khoei N., Qorbani M., Tajbakhsh P., "Copper deposits in Iran", Geological Survey of Iran Press, (1999) 421 p.
[2] Irannejad M., Salari Rad M., and Mohammadi M.A., "Comparison of Economics of Cementation and Solvent Extraction for Recovery of Copper from Tarom Sofla Oxidized Copper Leach Solutions", Scientific Quarterly Journal Geosciences 66 (2007) 68-73.
[3] Mirzaei Raini R., Ahmadi A., Mirnejad H., "Mineralogy and fluid inclusion studies in Mahour copper deposit, east of Lut block, Central Iran", Iranian Journal of Crystallography and Mineralogy 20:2 (2012) 307-318.
[4] Feyzi F., Arian M., "The Role of Building Controllers in the Formation of Copper Ore Deposits on Saein Qaleh 1:50000 Map", Journal of Basic Sciences Islamic Azad University 81 (2012) 1-10.
[5] Zamanian H., Rahmani Sh., Jannessary M.R., Zareii Sahamiieh R., Borna B., " Ore-genests study of The Cu-Au vein-type deposit in The Taron- Granitoid (North Zanjan) based on mineralogical, geochemical and fluid inclusion evidences", Scientific Quarterly Journal Geosciences 98 (2016) 255-282.
[6] Bazargani-Guilani K., Parchakani M., " Metalogenic Properties of Barik-Ab Pb-Zn (Cu) Ore Deposit with Acidic Tuff Host-Rock, west Central Alborz, Northwest of Iran", Scientific Quarterly Journal Geosciences 78 (2011) 97-104.
[7] Farid-Asl V., "Study of the genesis of Mari copper deposit (north of Zanjan) with special emphasis on enrichment and supergene oxidation processes", M.Sc. thesis, Tabriz university (2012) 121 p.
[8] Hosseyny-Ekhtiarabady M., Babakhani A.R., Sahandi M.R., Moosavi E., "Abhar 1:100000 geological sheet", Geological Survey of Iran (2017).
[9] Rahmani A., "Economic Geology Survey of Khalifa-Lu Deposition (North of Khorramdareh, Zanjan Province)" M.Sc. thesis, Tabriz university (2015) 182 p.
[10] Tadayon Eslami A., "Evaluation of mineral abilities of Zanjan quadrangle map 1:250000", Geological Survey of Iran Report (1990) 76 p.
[11] Hirayama K., Samimi M., Zahedi M., Hushmandzadeh A.M.,"Geology of Tarom district western part (Zanjan area) geology Survey of Iran Rep", Geological Survey of Iran Report 8 (1966) 31 p.
[12] Bazin D., Hubner H., "Copper deposits in Iran", Geological Survey of Iran Report 15 (1969) 232 p.
[13] Iwao, S.H., Hushmand-zadeh A., "Stratigraphy and petrology of the low-grade regionally metamorphosed rocks of the Eocene Formation in the Alborz Range, North of Tehran, Iran", The Journal of the Japanese Association of Mineralogists, Petrologists and Economic Geologists 65:6 (1971) 265-285.
[14] Tadayon Eslami A., "Systematic mineral exploration report in Zanjan quadrangle map in Chal-Kuhian area", Geological Survey of Iran (1984) 1-45.
[15] Peyrovan H., "Geochemical survey of alteration zones of Tarom region", PhD thesis, Islamic Azad University Science and Research Branch (2003) 50-160.
[16] Peyrovan H., "Mineralogical and geochemical classification of alteration rocks in Tarom area", Proceedings of the 9th Iranian Geological Society Conference (2004) 427-440.
[17] Hajalilo B., "Investigation of Pb, Zn and Cu mineralization in Northwestern Zanjan", Third Annual Conference of the Iranian Geological Society (2006) 234-240.
[18] Jahandideh-Kazempour K., "The study of economic geology of the Abbas Abad polymetallic ore deposit (Tarom Sofla, the NW of Qazvin province, Iran)", M.Sc. thesis, Islamic Azad University Lahijan branch (2012) 286p.
[19] Miranvari A. S., Calagari A., Siahcheshm K., Sohrabi G., "Investigation of genesis and fluid origin in Noghduz gold bearing quartz veins, East Azarbaijan Province, northwest of Iran", Iranian Journal of Crystallography and Mineralogy 27 (2019) 551-564.
[20] Lecumberri-Sanchez P., Steel-MacInnis M., Bodnar R.J., “A numerical model to estimate trapping conditions of fluid inclusions that homogenize by halite disappearance”, Geochim Cosmochim Acta 92 (2012) 14-22.
[21] Steele-MacInnis M., Lecumberri-Sanchez P., Bodnar R.J., “HOKIEFLINCS-H2O-NaCl: A Microsoft Excel spreadsheet for interpreting microthermometric data from fluid inclusions based on the PVTX properties of H2O–NaCl”, Computer in Geosciences 49 (2012) 334–337.
[22] Nabavi M.H., "An introduction to geology of Iran", Geological Survey of Iran (1355) 109 p.
[23] Hosseinzadeh M.R., Maghfouri S., Moayyed M., Rahmani A., "Khalifehlu deposit: high-sulfidation epithermal Cu-Au mineralization in the Tarom magmatic zone, North Khoramdareh", Scientific Quarterly Journal Geosciences 99 (2017) 179-194.
[24] Guest, B., Guest, A., Axen, G., "Late Tertiary tectonic evolution of Northern Iran: Acase for simple crustal folding, Global and Planetary Change", Geosphere 58 (2007) 435–453.
[25] Stocklin J., “Structural history and tectonics of Iran: a review”, American Association of Petroleum Geologists 52 (1968) 1229–1258.
[26] Aghanabati A., “Magmatic Rocks of Iran. Geological Survey of Iran; Scale 1:2500000, 1 sheet” Geological Survey of Iran (1990).
[27] Einali M., Alirezai S., Zaccarini F., “Chemistry of magmatic and alteration minerals in the Chahfiruzeh porphyry copper deposit, south Iran: implications for the evolution of the magmas and physicochemical conditions of the ore fluids” Turkish Journal of Earth Sciences 23 (2014) 147-165.
[28] Karei M., Gharib F., "Office-field studies to identify promising ranges of REE's in Zanjan province", Applied Research Center of Geological Survey of Iran, (2016) 711 p.
[29] Moayed M., Valizadeh M., "Petrology and Petrogenesis of the Eocene-Oligocene magmatic band of Tarom region and geobarometric of intrusive bodies of the region", the fourth conference of the Iranian Geological Society, Tabriz (2000), 3p.
[30] Riou R., Dupuy C., Dostal J., "Geochemistry of coexisting alkaline and calc-alkaline volcanic rocks from northern Azerbaijan (N.W. Iran)", Volcanology and Geothermal Research 11 (1981) 253-275.
[31] Sillitoe H.R., Hedenquist J.W., "Linkage between volcanotectonic settings, ore-fluid compositions, and epithermal precious- metal deposits", Society of Economic Geologist, Special Publication 10 (2003) 315-343.
[32] Clark G.C., Davis R.G., "Explanatory text of the Bandar-e-Pahlavi quadrangle map 1:250000", Geological Survey of Iran (1975) 198 p.
[33] Eftekharnejad J., Hajiyan J., Hirayama D.K., Hoshmandzadeh A., Nabavi M.H., Samimi M., Stoklin Y., Zahedi M., Alavi Naeini M., "Khodbandeh-Soltaniyeh 1:100000 geological sheet", Geological Survey of Iran (1995).
[34] Ganji A.R., "Mineralogical investigation of hydrothermal alterations in the middle part of Tarom Mountains – Northwest of Iran", Iranian Journal of Crystallography and Mineralogy 13:1 (2005) 121-133.
[35] Whitney D.L., Evans B.W., "Abbreviations for names of rock-forming minerals", American Mineralogist 95 (2010) 85-187.
[36] Darvishzadeh A., Asiyabanha A.," The role of pyroclastic rocks in the preferential expansion of hydrothermal alteration in the Abtrash volcanic zone", Scientific Quarterly Journal Geosciences 38 (2001) 49-59.
[37] Hajalilo B., "Tertiary metallogeny in West Alborz-Azarbaijan (Miyaneh-Siahrood) with special attitude toward Hashtjin area", PhD thesis, Shahid Beheshti University (2001) 275 p.
[38] White N.C., Hedenquist J.W., "Epithermal gold deposits: styles, characteristics and exploration", SEG Newsletter 23 (1995) 8–13.
[39] Shahabpour J., "Economic geology", Shahid Bahonar Univercity of Kerman 315 (2011) 547 p.
[40] Baker T., Bertelli M., Blenkinsop T., Cleverley J.S., McLellan J., Nugus M., Gillen D., "P-T-X conditions of fluids in the Sunrise Dam gold deposit, Western Australia, and implications for the interplay between deformation and fluids", Economic Geology 105 (2010) 873-894.
[41] Pirajno F.,"Hydrothermal processes associated with meteorite impacts", Springer Netherlands (2009) 759 p.
[42] Kazempour M., Hidarian Shahri M., Malekzadeh Shafaroudi A., "Mineralization, fluid inclusion and geochemical studies and interpretation of IP/RS data in Freezi prospect area, northeast Iran", Iranian Journal of Crystallography and Mineralogy 27 (2), (2019) 265-280.
[43] Dong G., Morrison G., Jaireth S., "Quartz textures in epithermal veins, Queensland; classification, origin and implication", Economic Geology 90 (1995) 1841–1856.
[44] Kouhestani H., Ghaderi M., Zaw K., Meffre S., Emami M.H., "Geological setting and timing of the Chah Zard breccia-hosted epithermal gold-silver deposit in the Tethyan belt of Iran", Mineralium Deposita 47 (2012) 425–440.
[45] Winchester J.A., Floyd P.A., "Geochemical discrimination of different magma series and their differentiation products using immobile elements", Chemical Geology, 20 (1977) 325-343.
[46] Shervais J.W., “Ti-V plots and the petrogenesis of modern ophiolitic lavas", Earth and Planetary Science Letters 59 (1982) 101-118.
[47] Jurkovich I., Garasich V., Hrvatović H., "Geochemical characteristics of the barite occurrences in the Palaeozoic complex of south-eastern Bosnia and their relationship to the barite deposits of the mid-Bosnian Schist Mountain", Geologia Croatica 63 (2010) 241–258.
[48] Noguchi T., Shinjo R., Ito M., Takada J., Oomori T., "Barite geochemistry from hydrothermal chimneys of the Okinawa Trough: insight into chimney formation and fluid/sediment interaction", Journal of Mineralogical and Petrological Sciences 106 (2011) 26–35.
[49] Salari M.A., Biyabangard H., Bomeri M., Dargahi S., “Petrology and geochemistry of andesitic dykes in the north of Rabor, Kerman province”, Journal of Mineralogical and Petrological 19 (2011) 285-296.
[50] Sun S.S., McDonough W.F., "Chemical and isotopic systematics of oceanic basalts, implications for mantle composition and processes. In: Saunders A.D., Norry A.M., eds., magmatism in ocean basins", Geological Society London Special Publications 42 (1989) 313–345.
[51] Kuster D., Harms U., “Post-collisional potassic granitoids form the southern and northwestern parts of the late Neoproterozoic East African Orogen: a review”, Lithos 45 (1998) 177-195.
[52] Ulmer P., “Partial melting in the mantle wedge–the role of H2O in the genesis of mantle-derived ‘arc-related’ magmas”, Physics of the Earth and Planetary Interiors 127 (2001) 215-232.
[53] Hofmann A. W., “Nb in Hawaiian magmas: constraints on source composition and evolution”, Chemical Geology 7 (1986) 17-30.
[54] Ebrahimi M., Kouhestani H., Mokhtari M. A. A., Feizi M., “Petrology and geochemistry of the Aqkand acidic volcanic rocks and perlites, North of Zanjan”, Scientific Quarterly Journal Geosciences 101 (2016) 99-110.
[55] Wilson M., “Igneous Petrogenesis: a global tectonic approach”, Unwin Hyman Ltd, London, (1989) 466 p.
[56] Hongyan G., Sun M., Yuan C., Xiao W., Zhao G., Zhang L., Wong K., Fuyuan W., “Geochemical, Sr–Nd and Zircon U–Pb–Hf isotopic studies of Late-Subduction”, Chemical Geology 266 (2009) 364-398.
[57] Nagudi N.O., Koberl C. H., Kurat G., “Petrography and geochemistry of the Sing granite, Uganda, and implication for its origin”, Journal of African Earth Sciences 35 (2003) 51-59.
[58] Shang G.K., Satir M., Sieble W., Nasifa E.N., Taubuld H., Liegeoise J.P., Tchoua F.M., “Geochemistry, Rb–Sr and Sm–Nd systematic: case of the Sangmelima region, Ntem complex, southern Cameroon”, Journal of African Earth Sciences 40 (2004) 61-79.
[59] Wu F., Jahnb B., Wildec S. A., Lod C. H., Yuie T. F., Lina Q., Gea W., Suna D., “Highly fractionated I-type granites in NE China (II): isotopic geochemistry and implications for crustal growth in the Phanerozoic”, Lithos, 67 (2003) 191-204.
[60] Richards J. P., “High Sr/Y arc magmas and porphyry Cu±Mo±Au deposits: Just add water”, Economic Geology 106 (2011) 1075-1081.
[61] Piranjo F., "Hydrothermal mineral deposits", Springer Verlag (1992).
[62] Bodnar R.J., Lecumberri-Sanchez P., Moncada D., Steele-MacInnis M., "Fluid Inclusions in Hydrothermal Ore Deposits, In: Holland H.D. and Turekian K.K. (eds.) Treatise on Geochemistry, Second Edition, vol. 13", Elsevier (2014) 119-142.
[63] Shephered T. J., Rankin A.H., Alderton D. H.M., “A practical guide to fluid inclusion studies”, Blackie, London (1985).
[64] Van den Kerkhof A.M., Hein U.F., "Fluid inclusion petrography", Lithos 55 (2001) 4–27.
[65] Roedder E., “Fluid Inclusions”, In: Ribbe PE(Ed) Reviews in Mineralogy, 12, Mineralogical Society of America, Washington DC (1984) 644 p.
[66] Symons D.T.A., Symons T.B., Sangster D.F., "Paleomagnetism of the society Cliff's dolostone and the age of the Nanisivik zinc deposits, Baffin Island, Canada", Mineralum Deposita 35 (2000) 672-682.
[67] Bodbar R.J., Reynolds T.J. Kuehn C.A.,"Fluid inclusion systematics in epithermal in systems", Rev. Economic Geology 2, (1985) 73-97.
[68] Karimpour M.H., Saadat S., "Applied Economic geology", University of Ferdowsi Mashhad (2006) 536 p. (in Persian)
[69] Hall D.l., Sterner S.M., Bodnar R.J.,"Freezing point depression of NaCl-KCl-H2O solutions", Economic Geology 93 (1988) 197-202.
[70] Robb L., "Introduction to ore forming processes", Blackwell publishing. British Library (2005).
[71] Bodnar R. J., “Revised equation and table for determining the freezing point depression of H2O- NaCl solution”, Geochimica, et Cosmochimica Acta 57 (1993) 683-684.
[72] Bodnary R.H., Vityk M.O., "Interpretation of microthermometric data for H2O-NaCl fluid inclusion, in De Vivo, B., and Frezootti, M.L., eds., Fluid inclusion in minerals: Methods and applications: International mineralogical association, Short course of the working group", Inclusions in minerals (1994)117-130.
[73] Sorby H., "On the microscopic structure of crystals indicating the origin of minerals and rocks", Journal of Geological Society, London (1980).
[74] Wilkinson J. J., "Fluid inclusions in hydrothermal ore deposits", Lithos 55 (2001) 229-272.
[75] Mehrabi B., Ghasemi Siyani M., "Mineralogy and economic geology of Cheshmeh Hafez polymetal deposit, Semnan Province, Iran ", Journal of Economic Geology 2 (2010) 1-20.
[76] Benning L.G., Seward T.M., "Hydrosulfide complexing of Au in hydrothermal solutions from 150 to 400 °C and 500 to 1500 bars", Geochimica, et. Cosmochimica Acta, 60 (1996) 1849-1871.
[77] Seward T.M., Barnes H.L., "Metal transport by hydrothermal ore fluids", in Barnes, H.L., ed., Geochemistry of hydrothermal ore deposits. New York, John Wiley and Sons (1977) 435-486.
[78] Palyanaova G., "Physicochemistry modeling of the coupled behaviour of gold and silver in hydrothermal processes, gold fineness, Au/Ag ratios and their possible implication", Chemical Geology, 255 (2008) 399-413.
[79] Giggenbach W.F., "Theorigin and evolution of fluids in magmatic-hydrothermal systems", in Barnez, H.L., Geochemistry of hydrothermal ore deposits, 3rd ed., New York, wiley Interscience (1997) 737-796.
[80] Rossetti P., Colombo F., "Adularia-sericite gold deposits of Marmato (Caldas, Colombia): field and petrographic data", in: McCaffrey, K.J.W., Lonergan, l., Wilkinson, J.J., Editors. Fractures, Fluid Flow and Mineralization Geological Society of London, Special Publication 155 (1999).
[81] Zhang Y.G., Frantz J.D., "Determination of the homogenization temperatures and densities of supercritical fluids in the system NaCl-KCl-CaCl2-H2O using synthetic fluid inclusions", Chemical Geology 64 (1987) 335-350.
[82] Roedder E., Bodnar R. J., “Geologic pressure determinations from fluid inclusions studies”, Annual Review of Earth and Planetary Sciences 8 (1980) 263-301.
[83] Ahmad S.N., Rose A.W., "Fluid Inclusions in Porphyry and Skarn Ore at Santa Rita, New Mexico", Economic Geology 75(1980) 229-250.
[84] Aghajani Marsa S., Emami M. Lotfi M., Gholizadeh k., Ghasemi Siani M., “Source of polymetal epithermal veins at Nikuyeh district (West of Qazvin) based on mineralogy, alteration and fluid inclusion studies”, Scientific Quarterly Journal Geosciences 25 (2016) 157-168.
[85] Gharesi M., Rasa I., Yazdi M, “Investigation of Mazraeh Skarn mineralization, North of Ahar, with an emphasis on fluid inclusion studies”, Iranian Journal of Crystallography and Mineralogy 26:1 (2018) 229-244.
[86] Haas J.L., “The Effect of Salinity on the Maximum Thermal Gradient of a Hydrothermal System at Hydrostatic Pressure” Economic Geology 66 (1971) 940-946.
[87] Hedenquist J.W., "Mineralization associated with volcanic-related hydrothermal systems in the Circum-Pacific basin", In: Hom, M.K., Editor. Transactions of the Fourth Circum-Pacific Energy and Mineral Resources Conference, American Association of Petroleum Geologists, Tulsa, (1987) 513-524.
[88] Hedenquist J.W., Arribas A.R., Gonzalez-Urien E., "Exploration for epithermal gold deposits. In: Hagemann, S. G., Brown, P. E., (Eds). Gold in 2000". Reviews in Economic Geology 13 (2000) 245-277.
[89] Bartwaite R.L., Simpson M.P., Faure K, “Telescoped porphyry Cu-Mo-Au mineralization, advanced argillic alteration and quartz sulphide gold anhydrite veins in the Thames District, New Zealand” Mineralium Deposita 36 (2001) 623-640.
[90] Kolb J., Hagemann S., "Structural control of low-sulfidation epithermal gold mineralization in the Rosario–Bunawan district, east Mindanao ridge, Philippines", Mineralium Deposits 44 (2009) 795-815.
[91] Richards J.P., "Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere", Geology 37 (2009) 247–250.
[92] Richards J.P., Spell T., Rameh E., Razique A., Fletcher T., "High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu ± Mo ± Au potential: examples from the Tethyan arcs of central and eastern Iran and western Pakistan", Economic Geology 107 (2012) 295-332