سنگ شناسی سنگ‌های آذرین غرب و جنوب‌غرب شهرستان رزن، استان همدان

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه بوعلی‌سینا

چکیده

سنگ­های آذرین غرب و جنوب­غرب رزن، در استان همدان، غرب ایران، و در پهنه سنندج- سیرجان برونزد دارند. براساس بررسی­های سنگ­نگاری و زمین­شیمیایی، این توده­ها از دیوریت، گابرودیوریت، مونزونیت و کوارتزمونزونیت، آندزیت و آندزیت­بازالتی تشکیل شده­اند. نتایج حاصل از آنالیزهای زمین­شیمیایی نشان می­دهد که این سنگ­ها وابسته به سری ماگمایی آهکی قلیایی هستند. ماهیت و ترکیب زمین­شیمیایی سنگ­های منطقه دستخوش فرایند­های ماگمایی چون تبلور جدایشی، هضم و آلایش پوسته­ای شده­اند. الگوی تغییرات عناصر خاکی نادر و کمیاب بهنجار شده­ نسبت به کندریت و گوشته اولیه، نشان می­دهند که مقادیر عناصر خاکی نادر (LREE) از عناصر خاکی سنگین (HREE) بیشتر است. ماگمای سنگ­های آذرین حدواسط - بازی غرب و جنوب­غرب رزن در یک پهنه فرورانش و قوس­های آتشفشانی کرانه فعال قاره­ای تشکیل شده است.      

کلیدواژه‌ها


عنوان مقاله [English]

Petrology of the igneous rocks in the west and south‌west of Razan, Hamedan Province

نویسندگان [English]

  • Maryam Ghobadnam
  • Hosain Shahbazi
چکیده [English]

West and south­west of Razan igneous rocks are located in the Hamedan Province in the Sanandaj- Sirjan zone, west Iran. According to petrography and chemical studies, these rock bodies are composed of diorite, gabbrodiorite, monzonite, quartz- monzonite, andesite and andesibasalt. The results of geochemical analysis show that these rocks belong to a cal- alkaline magma series. The geochemical charactersistics of the rocks in this area have been affected by the magmatic processes such as fractional crystallization, assimilation, rate of partial melting and composition of original rock. Patterns of trace and  rare earth elements normalized to Chondrite and primitive mantle show that LREE contents are sharply higher than HREE. The magma of the intermediate-basic igneous rocks in the west and southwest of Razan have formed in a subducthon zone and volcanic arc active continental margin.

کلیدواژه‌ها [English]

  • diorite
  • Geochemistry
  • petrology
  • Razan
  • Sanandaj- Sirjan zone
[1] Ahmadi-khalajei A., Esmaeily D., Valizadeh M. V., Rahimpour-Bonab H., "Petrology and geochemistry of granitoid complex of Boroujerd, Sanandaj-sirjan Zone, Western Iran", Journal of Asian Earth Sciences 29: (2007) 859-877.

[2] Shabbazi H., Siebel W., Pourmoafee M., Ghorbani M., Sepahi A.A., Shang C. K. Vousoughi Abedini M., "Geochemistry and U-Pb zircon geochronology of the Alvand Plutonic complex in Sanandaj-sirjan Zone (Iran): New evidence for Jurassic magmatism", Journal of Asian Earth Sciences 39: (2010) 668-683.

[3] Mahmoudi S., Corfu F., Masoudi F., Mehrabi B., Mohajjel M., "U-Pb dating and emplacement history of plutons in northern Sanandaj-Sirjan zone, Iran", Journal of Asian Earth Science 41(2011) 238-249.

[4] Esna-Ashari A., Tiepolo M., Valizadeh M.V., Hassanzadeh J., Sepahi A.A., "Geochemistry and zircon U-Pb geochronology of Aligoodarz granitoid complex, Sanandaj-Sirjan zone, Iran", Journal of Asian Earth Sciences. 43, (2012) 11-22.

[5] Tavakoli N., Davoudian A. R., Shabanian N., Azizi H., Neubauer F., Asahara A., Bernroider M., "Zircon U-Pb dating, mineralogy and geochemical characteristics of the gabbro and gabbro-diorite bodies, Boein–Miandasht, western Iran", International Geology Review. https://doi.org/10. 1080/00206814. )2019(. 1583139.

[6] Moazzen M., Homam S. M., Ghaderi Zafreh A., " fibrolite formation in the Chahghand gabbrodiorite contact aureole, NE Neyriz, Southern Iran (in Persian)", Iranian Journal of Crystallography and Mineralogy (2006) 113-128.

[7] Gardideh S., Sepahi A.A., Aliani F., " Petrology and geochemistry of Moshirabad granitoid body (South Ghorveh-Kurdestan) (in Persian) " Iranian Journal of Crystallography and Mineralogy (2011) 563-580.

[8] Shabani R. A., Davoudi Z., Asiabanha A., "20th symposium of the Iranian Society of Geological Sciences ", University of Tehran. September., 6-8 (2016).

[9] Ma L., Wang Q., Wyman D. A., Jiang Z.Q., Yang J. H., Li Q. L., Gou G. N., Guo H. F. “Late Cretaceous crustal growth in the Gangdese area, southern Tibet:Petrological and Sr–Nd–Hf–O isotopic evidence fromZhengga diorite–gabbro”, Chemical Geology 349–350 (2013) 54–70.

[10] Esna-Ashari A., Sarjoughian F., "Origin of olivine in Molataleb ultramafic rocks and the role of olivine on magma evolution (in Persian)", Iranian Journal of Crystallography and Mineralogy 1 (2016) 145-154.

[11] Xu H., Zhang J., Wang Y., Liu W., "Late Triassic alkaline complex in the Sulu UHP terrane: Implications for post-collisional agmatism and subsequent fractional crystallization", Gondwana Research 35 (2016) 390–410.

[12] Zeng G., Huang X. W., Zhou M. F., Chen L. H., Xu X. Sh., "Using chalcophile elements to constrain crustal contamination and xenolith-magma interaction in Cenozoic basalts of eastern China", Lithos 258–259 (2016) 163–172.

[13] Molaei Yeganeh T., Torkian A., Sepahi A.A., "Source and geothermobarometry of the gabbrodioritic intrusive body, (S- Qorveh –Kurdistan); with emphasis on minerals chemistry (in Persian)", Iranian Journal of Crystallography and Mineralogy 1 (2017) 153-166.

[14] Sepahi A.A., Najafi Rashed S., Shahbazi H., Maanijou M.,"Textural and Sr-Nd isotopic evidence of assimilation of pelitic rocks in the Alvand plutonic complex (western Iran) (in Persian)", Iranian Journal of Crystallography and Mineralogy 3 (2016) 503-514.

[15] Shafeii A., Hoseini A., Ghasemi A., Majidi Fard M., "Explanatory text of kaboodarahang, Geological Quadrangle Map 1:100000 (in Persian) ", Series Sheet. 5760, Geological Survey of Iran, Tehran (2004).

[16] Alal-Mahabadi S., and Foudazi M., "Explanatory text of Razan. Geological Quadrangle Map 1:100000 (in Persian)", Series Sheet. 5860, Geological Survey of Iran, Tehran (2003).

[17] Vernon R.H., "A Practical guide to Rock Microstructure", Cambridge University press: United Kingdom, (2004) pp. 594.

[18] Shelley D., "Igneous and metamorphic rocks under the microscope: Chapman and Hall", University Press, Cambridge (1993).

[19] Cobbing J., "the geology and mapping of granite batholiths", Springer- veralg Berlin Heidelberg (2000).

[20] Nelson S. T., Montana A., "Sieve- textured Plagioclase in volcanic rocks Produced by rapid decompression". American Mineralogist77 (1992) 1242- 1249.

[21] Cox K.G., Bell J. D., Pankhurst R. J., "The interpretation of igneous rocks. George Allen Unwin, London" (1979).

[22] Middlemost E.A.K., "Naming materials in the magma igneous rock system", Earth-Science Reviews, V. 37, (1994) P. 215-224.

[23] Irvine T. N., Baragar W. R. A., "Guide to the chemical classification on the common volcanic rocks, Canadian", Journal of Earth Sciences. V. 8, (1971) P. 484- 523.

[24] Hastie A. R., Kerr A.C., Pearce J.A., Mitchell S.F., "Classification of Altered Volcanic Island Arc Rocks using Immobile Trace Elements: Development of the Th-Co Discrimination Diagram", Journal of Petrology, v. 48, (2007) p. 2341-2357.

[25] Harker A. (1909) "The natural history of igneous rocks", Methuen, London, (2002) 384 pp.

[26] Willson M., "Igneous Petrogenesis: a global tectonic approach", Champman & Hall, New York (1989).

[27] Boynton W.V., "Geochemistry of the rare earth elements: meteorite studies”, In: Henderson, P. (ed), Rare Earth Element Geochemistry, Elsevier", (1984) P. 63–114.

[28] McDonough W.F., Sun S.S., “The composition of the Earth”, Chemical geolog, V. 120, (1995) P. 223-253.

[29] Kharbish Sh., "Geochemistry and magmatic setting of Wadi El-Markh island-arc gabbro–diorite suite, central Eastern Desert, Egypt”, Chemie der Erde (Geochemistry), V. 70, (2010) P. 257–266.

[30] Rollinson H.R., "Using geochemical data: evolution, presentation, interpretation. Longman Group UK Limited", (1993) 352pp.

[31] Fitton J.G., James D., Kempton P.D., Ormerod D.S., Leeman W.P., "The role of lithospheric mantle in the generation of Late Cenozoic basic magmas in the western United States", Petrlogy 1 (1988) 331–349.

[32] Aliani F., Dadfar S., Maanijou M., Borzoei K., "Geochemistry and tectonomagmatic sitting of the intrusive rocks in northeast of the Sonqor area, Iran (in Persian)", Iranian Journal of Crystallography and Mineralogy 2 (2014) 229-242.

[33] Almeida M. E., Macambira M. J. B., Oliveira E. C., "Geochemistry and zircon geochronology of the I-type high-K calc-alkaline and S-type granitoid rocks from southeastem Roraima, Brazil: Orosirian collisional magmatism evidence (1.97-1.96 Ga) in Central portion of Guyana Shield", Precambrian Rasearch 155(2): (2007) 69-97.

[34] Tankut A., Wilson M., Yihunie T., "Geochemistry and tectonic setting of Tertiary volcanism in the Guvem area, Anatolia, Turkey", Journal of Volcanology and Geothermal Research, V. 85, (1998) P. 285–301.

[35] Machado A., Lima E.F., Chemale J.F., Morta D., Oteiza O., Almeida D.P.M., Figueiredo A.M.G., Alexandre F.M., Urrutia J.L., "Geochemistry constraints of Mesozoic-Cenozoic calk-alkaline magmatism in the South Shetland arc, Antarctica", Journal of South American Earth Sciences, V. 18, (2005) P. 407-425.

[36] Taylor S.R., Mclennan S.M., "The continental crust, its composition and evolution, an examination of the geochemical record preserved in sedimentary rocks", Blackwell. Oxford (1985).

[37] Thompson R.N., "Magmatism of the British Tertiary province, Scottish", Journal of Geology, V. 18, (1982) P. 49-107.

[38] Tepper J.H., Nelson B.K., Bergantz G.W., Irving A.J., "Petrology of the Chilliwack batholith, North Cascades, Washington: generation of calc-alkaline granitoids by melting of mafic lower crust with variable water fugacity”, Contributions to Mineralogy and Petrology, V. 113, (1993) P. 333-351.

[39] Muller D., Groves D.I., "Direct and indirect associations between potassic igneous rocks, shoshonites and gold-copper deposites", Ore Geology Reviews V. 8, (1993) P.383-406.

[40] Pearce J.A., Gale G. h., "Identification of ore-deposition environment from trace-element geochemistry of associated igneous host rock, Geological Society, London", Special Publications, 7(1), (1977) pp. 14-24.

[41] Pearce J.A., Harris N.B., and Tindle A.G., "Trace element discrimination diagrams for the tectonic interpretation of granitic rocks ", John of Petrology. (1984) 956–983.

[42] Pearce J.A., "Trace element characteristics of lavas from destructive plate boundaries. Andesites: Orogenic Andesites and Related Rocks (Thorpe, R. S., ed.) ", John Wiley & Sons, New York. (1982) 525–554.

[43] Ahadnejad V., Valizadeh M.V., Deevsalar R., and Rezaei-Kahkhaei M., "Age and geotectonic position of the Malayer granitoids: Implication for plutonism in the Sanandaj–Sirjan Zone, Iran",

Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 261: (2011) 61–75.

[44] Arvin M., Pan Y., Dargahi S., Malekizadeh A., Babaei A., "Petrochemistry of the SiahKuh granitoid stock southwest of Kerman, Iran: Implications for initiation of Neotethys subduction", Journal of Asian Earth Sciences 30: (2007) 474–489.

[45] Tchameni R., Pouclet A., Penary J., Ganwa A., Toteu S. F., "Petrology and geochemistry of the Ndaoundere Pan-African granitoids in Central north Cameroon: implications for their sources and geological setting", Journal of African Earth Science 44(5) (2006) 511-529.

[46] Gence S.C., Tuysuz Q., ""Tectonic setting of the Jurassic bimodal magmatism in the Sakarya Zone (Central and Western Pontides), Northern Turkey: A geochemical and isotopic approach", Lithos, V. 118, (2010) P.95–111.

[47] Pearce J.A., "geochemical fingerprinting of oceanic basalt with applicatios to ophiolite classification and the search for Archean oceanic crust", Lithos 100, (2008) 14- 48.