Study of Petrology and Geochemistry of west Aghda Dikes (Yazd); Using Minerals Chemistry

Document Type : Original Article

Authors

Abstract

Diabase dikes in the West Aghda  (Yazd Province) are located within the Bahramtaj mine in the Central Iran zone. These dikes are dark gray and crops out in the limestone-dolomite rocks. They are located along the east-west faults of the West Aghda. Plagioclase, biotite, amphibole, and pyroxene are the main minerals in these dikes. Plagioclases are andesine, biotite are often iron type (FeO: 24.27-31.57), amphiboles are magnesio-hornblende, and pyroxenes are Augite (En 0.50-0.58, Fs 0.14-0.22, Wo 0.25-0.31). The temperature and pressure of crystallization of these dikes have been investigated with different methods of biotite, amphibole and clinopyroxene thermobarometry. The maximum crystallization temperature is about 1150 °C and pressure less than 5 kbar. The nature of the magma for these dikes is alkaline, and oxygen fugacity is high during the crystallization. The tectonic setting of the dikes in the West Aghda is in WPT.

Keywords


[1] Gholizadeh K., Rasa I., Yazdi M., Boni M., Mohamadi M., "Mineralogy of Zn-non sulfides (calamine) Bahramtaj zinc and lead deposit", Thirty-fifth National Geosciences conference, Feb 2017.

[2] Mahabadi S.A., Foudazi M., "Geological map of Aghda (1/100000)", Geological survey of Iran (2007).

[3] Stocklin J., "Structural history and tectonics of Iran: a review". AAPG Bull 25(1968) 1229-1258.

[4] Whitney D.L., Evans B.W., "Abbreviations for names of rock-forming minerals", American Mineralogist 95 (2010) 185–187.

[5] Deer W.A., Howie A., Zussman J., "An interduction to the rock – formingminerals", 17th ed., (1986) Longman Ltd, 528P.

[6] Nachit H., Ibhi A., Abia E.H., Ohoud M.B., "Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites", Geomaterials (Mineralogy) Geoscience 337 (2005).

[7] Spear J.A., "Micas in igneous rocks", In: Micas, Bailey, S.W., (ed): Mineralogical Society of America, Review in Mineralogy, 13 (1984) 299 – 356.

[8] Stone D., "Temperature and pressure variations in suites of Archean felsic plutonic rocks, Berens river area, northwest superior province, Ontario, Cananda", The Canadian Mineralogist, 38(2000) 455-470.

[9] Foster M. D., "Interpretation of the composition of trioctahedral micas", United States Geological Survey Professional Paper 354-B (1960) 11-46.

[10] Sial A.N., Ferreira V.P., Fallick A.E., Cruz E.A., "Amphibole-rich clots in calc-alkalic granitoids in the Borborema Province, Northeastern Brazil", Journal of South American Earth 11(5)(1998) 457-472.

[11] Leake B.E., Woolley A.R., Arps C.E.S., Birch W.D., Gilbert M.C., Grice J.D., Hawthorne F.C., Kato A., Kisch H.J., Krivovichev V.G., Linthout K., Laird J., Mandarino J., Maresch W.V., Nickel E.H., Rock N.M.S., Schumacher J.C., Smith D.C., Stephenson N.C.N., Ungaretti L., Whitaker E.J.W., Youzhi G. "Nomenclature of amphiboles: report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names " Mineralogical Magazine (1997) 61 295–321.

[12] Morimoto N.,"Nomenclature of pyroxenes", Fortschr mineral 66 (1988) 237-252.

[13] Dymek R.F., "Titanium, aluminum and interlayer cation substitutions in biotite from high-grade gneisses West Greenland", American Mineralogist 68(1983) 880-889.

[14] Henry D.J., Guidotti C.V., "Ti in biotite from metapelitic rocks: Temperature effects, crystallochemical controls and petrologic applications", American Mineralogist 87 (2002) 375-382.

[15] Arima M., Edgar A.D., "Substitution mechanisms and solubility of titanium in phlogopites from rocks of probable mantle origin", Contributions to Mineralogy and Petrology 77(1981) 288–295.

[16] Forbes W.C., Flower M.F.J., "Phase relations of titan-phlogopite, K2Mg4TiAl2Si6O20 (OH)4: A: refractory phase in the uppe r mantle?", Earth and Planetary Science Letters 22 (1974) 60-66.

[17] Tronnes R.G., Edgar A.D., Arima M.,"A high pressure-high temperature study of TiO2 solubility in Mg-rich phlogopite: Implications to phlogopite chemistry", Geochimica et Cosmochimica Acta 49(1985) 2323–2329.

[18] Robert J.L., Sassi F.P., Takeda H., Weiss Z., Wones D.R., "Nomenclature of the micas", Canadian Mineralogist 36(3) (1998) 905-912.

[19] Henry Darrell J., Charles V. Guidotti, Jennifer A. Thomson. "The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms", American Mineralogist 90 (2005) 316-328.

[20] Uchida E., Endo S., Makino M., "Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits", Resource Geology 57 (2007) 47-56.

[21] Anderson J. L., Smith D. R., "The effects of temperature and ƒO2 on the Al-inhornblende barometer", American Mineralogist (1995) 80: 549-559.

[22] Helz R., "Phase reactions of basalts in their melting range at PH2O=5kb, Part 11, Melt composition", Journal of Petrology 17(1993) 139-193.

[23] Hammarstrom, J.M., Zen, E., "Aluminum in hornblende: An empirical igneous geobarometer", American Mineralogist (1986) 71: 1297-1331.

[24] Vyhnal C.R., Mcsween, H.Y., Speer, J.A., "Hornblende Chemistry in Southern Appalachian Granitoids: implications for aluminum hornblende thermo barometry and magmatic epidote stability", American Mineralogist 76(1991) 176-188.

[25] Raase P., "Al and Ti contents of hornblende, indicators of pressure and temperature of regional metamorphism", Contributions to Mineralogy and Petrology 45(1974) 231-236.

[26] Hollister L.S., Grissom G.C., Peters E.K., Stowell H.H., Sisson V.B., "Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of clac-alkaline plutons", American Mineralogist 72(1987) 231-239.

[27] Schmidt M.W., "Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al in hornblende barometer", Contributions to Mineralogy and Petrology 110(1992) 304-310.

[28] Johnson M.C., Rutherford M.J., "Experimental calibration of the aluminum-in-hornblende geobarometer with application to Long Valley Caldera (California) volcanic rocks", Geology 17(1989) 837-841.

[29] Anderson J.L., Smith, D.R., "The effects of temperature and ƒO2 on the Al-in-hornblende barometer", American Mineralogist 80(1995) 549-559

[30] Soesoo A.," A multivariate statistical analysis of clinopyroxene composition: empirical coordinates for the crystallisation PT- estimations", Geological Society of Sweden (Geologiska Foreningen) 119 (1997) 55-60.

[31] Lindsley D.H., "Pyroxene thermometry" , American Mineralogist 68 (1983) 477-493.

[32] Abdel-Rahman A.M., "Nature of biotites from alkaline, calc-alkaline and peraluminous magmas", Journal of Petrology 35(2) (1994) 525-541.

[33] Le Base M.J., "The role of aluminum in igneous clinopyroxenes with relation to their Parentage" , American Journal of Science 260 (1962) 267-288.

[34] Leterrier J., Maurry R.C., Thonon P., Girard D., Marchal M., "Clinopyroxene composition as a method of identification of the magmatic affinites of paleo-volcanic series", Earth and Planetary Science Letters 59 (1982) 139-154.

[35] Nisbet E. G., Pearce J.A., "Clinopyroxene composition in mafic lavas from different tectonic settings", Contributions to Mineralogy and Petrology 63 (1977) 149–160.