Physical conditions and magmatic processes by crystal size distributions in the granitoids from the Byarjomand Batholith, north-central Iran

Authors

Abstract

The Byarjomand Batholith with Pre-cambrian age in the north Semnan, north-central Iran, consists of granite, granodiorite, quartz monzodiorite and gabbrodiorite. These rocks have granular texture and occasionally granophyric, pertite and poicelitic textures. Crystal size distribution (CSD) studies can reveal magmatic processes. In order to determine volometric proportion, growth time and nucleation rate of feldspar crystals and magma crystallization rate, feldspar crystals from 8 samples of granite, granodiorite and quartz monzodiorite rocks have been studied to quantitative analysis by JMicrovision and CSD Corrections softwares and then the results of the analysis of various samples were compared together. The calculated volumetric proportion indicates that percent of these minerals vary from 10.95 (in quartz monzodiorite) to 39.2 (in granites). According to growth rate (10-10 mm/s) and CSD graphs slope (-3.93 ­- -6.88), samples have grown in different time ranges, and growth time in the granodiorite and granites is more than quartz monzodiorite as growth time procure 54.29 to 81.93 years in granite rocks and 46.08 years in quartz monzodiorite rocks. Also nucleation rate in quartz monzodiorite is maximum and granites and granodiorite have minimum amounts. So crystal presence in the granodiorite and granites are larger than crystals of quartz monzodiorites and it is compatible with petrographic observations and indicates the important of different physical conditions prevailing in the magma solidification. In the some of the frequency distribution curves observed fractures and curvature that is due to contamination and magma mixing and fractionation process.

Keywords


[1] نبوی م.ح.، "دیباچه‌ای بر زمین‌شناسی ایران"، سازمان زمین‌شناسی و اکتشافات معدنی کشور، (1355) ص 109.

[2] Hassanzadeh J., Stockli D., Horton B., Axen G., Stockli L., Grove M., Schmitt A., Walker J, “U-Pb zircon geochronology of late Neoproterozoic–Early Cambrian granitoids in Iran: Implications for paleogeography, magmatism, and exhumation history of Iranian basement”, Tectonophysics 451 (2008) 71-96.

[3] Seaman S.J., “Crystal Clusters, Feldspar Glomerocrysts, and Magma Envelopes in the Atascosa Lookout Lava Flow, Southern Arizona, USA: Recorders of Magmatic Events”, Journal of Petrology 41 (2000) 693-716.

[4] Higgins M.D., “Origin of anorthosite by textural coarsening: Quantitative measurements of a natural sequence of textural development”, Journal of Petrology 39 (1998) 1307–1325.

[5] Marsh B.D., “On the interpretation of Crystal Size Distributions in magmatic systems”, Journal of Petrology 39 (1998) 553–600.

[6] Jerram D.A., Higgins M.D., “3D Analysis of rock textures: quantifying igneous microstructures”, Elements 3 (4) (2007) 239–245.

[7] Rowe T., Kappelman J., Carlson W.D., Ketcham R.A., Denison C., “High-resolution computed tomography; a breakthrough technology for earth scientists”, Geotimes 42 (1997) 23-27.

[8] Jerram D.A., Mock A., Davis G.R., Field M., Brown R.J., “3D crystal size distributions: A case study on quantifying olivine populations in kimberlites”, Lithos 112S (2009) 223- 235.

[9] Hezel D.C., Elangovan P., Viehmann S., Howard L., Abel R.L., Armstrong R., “Visualization and quantification of CV chondrite petrography using micro-tomography”, Geochimica et Cosmochimica Acta 116 (2013) 33-40.

[10] Cashman K.V., “Textural constraints on the kinetics of crystallization of igneous rocks”, In Mineralogical Society of America Reviews in Mineralogy 24 (1990) 259–314.

[11] Marsh B., “Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization”, I. Theory. Contributions to Mineralogy and Petrology 99 (1988) 277–291.

[12] Cashman K.V., Marsh B.D., “Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallisation II. Makaopuhi lava lake”, Contributions to Mineralogy and Petrology 99 (1988) 292–305.

[13] Cashman K.V., “Relationship between plagioclase crystallisation and cooling rate in basaltic melts”, Contributions to Mineralogy and Petrology 113 (1993) 126–142.

[14] Resmini R.G., Marsh B.D., “Steady-state volcanism, paleoeffusion rates, and magma system volume inferred from plagioclase crystal size distributions in mafic lavas; Dome Mountain, Nevada”, Journal of Volcanology and Geothermal Research 68(4) (1995) 273–296.

[15] Higgins M.D., “Verification of ideal semi-logarithmic, lognormal or fractal crystal size distributions from 2D datasets”, Journal of Volcanology and Geothermal Research 154(2006a) 8-16.

[16] Higgins M.D., Roberge, J., “Crystal size distribution (CSD) of plagioclase and amphibole from Soufriere Hills volcano, Montserrat: evidence for dynamic crystallisation/textural coarsening cycles”, Journal of Petrology 44 (2003) 1401–1411.

[17] مسعودی ف.، منفردی ب.، "تخمین زمان رشد و سرعت هسته‌بندی پلاژیوکلازهای واحد آندزی_بازالت در منطقه چهار گنبد، شمال شرق سیرجان با روش توزیع اندازه بلور (CSD)"، پانزدهمین همایش بلورشناسی و کانی‌شناسی ایران، (1386).

[18] مسعودی ف.، منفردی ب.، "کاربرد روش(CSD) برای تعیین سهم حجمی بلورهای پلاژیوکلاز آندزی بازالت‌های منطقه جاجرم"، دومین همایش تخصصی زمین‌شناسی دانشگاه پیام نور، (1387).

[19] Jackson E.D., “Primary textures and mineral associations in the ultramafic zone of the Stillwater complex, Montana”, US Geological Survey Professional Paper 358 (1961) 106.

[20] Higgins M.D., “Measurement of crystal size distributions”, American Mineralogist 85(2000) 1105–1116.

[21] Higgins M.D., “Closure in crystal size distributions (CSD), verification of CSD calculations, and the significance of CSD fans”, American Mineralogist 87 (2002a) 171–175.

[22] Higgins M.D., “Determination of crystal morphology and size from bulkmeasurements on thin sections: numerical modeling”, American Mineralogist 79 (1994) 113–119.

[23] رحمتی ایلخچی م.، ندیمی ح.، سهندی م.، بهره‌مند م.، "تهیه نقشه زمین‌شناسی 1:100000 رزوه"، سازمان زمین‌شناسی کشور، (1382).

[24] حاجی حسینی ع.، قاسمی ا.، کریمی‌نیا س.، سعیدی ا.، "تهیه نقشه زمین‌شناسی 1:100000 بسطام"، سازمان زمین‌شناسی و اکتشافات معدنی کشور، (1382).

[25] افتخار نژاد خ.، آقانباتی ع.، "تهیه نقشه زمین‌شناسی 1:250000 جاجرم"، سازمان زمین‌شناسی کشور، (1992).

[26] نوایی ا.، صالحی راد م.،مجیدی ب.،" نقشه زمین‌شناسی 1:250000 خارتوران"، سازمان زمین‌شناسی کشور، (1992).

[27] کاظمی ک.، کنعانیان ع.، سرجوقیان ف.، "شواهد سنگ‌نگاری دگرشکلی دما بالا در حاشیه‌ی توده‌ی گرانیتوئیدی کیکی، ایران مرکزی"، مجله بلورشناسی و کانی‌شناسی ایران، شماره 1 (1393) ص 3-14.

[28] Saltikov S.A., “The determination of the size distribution of particles in an opaque material from a measurement of the size distributions of their sections. In H. Elias, Ed. Proceedings of the Second International Congress for Stereology”, Springer-Verlag, Berlin (1967) 163–173.

[29] Sahagian D.L., Proussevitch A.A., “3D particle size distributions from 2D observations; stereology for natural applications”, Journal of Volcanology and Geothermal Research 84 (3–4) (1998) 173–196.

[30] Van der Zwan F.M., Chadwick J.P., Troll V.R., “Textural history of recent basaltic-andesites and plutonic inclusions from Merapi volcano”, Contributions to Mineralogy and Petrology 166 (2013) 43-63.

[31] Resmini R.G., “Modeling of crystal size distributions (CSDs) in sills”, Journal of Volcanology and Geothermal Research 161 (2007) 118-130.

[32] Rannou E., Caroff M., “Crystal Size Distribution in Magmatic Rocks: Proposition of a Synthetic Theoretical Model”, Journal of Petrology 51 (2010) 1087-1098.

[33] Higgins M.D., “Use of appropriate diagrams to determine ifcrystal size distributions (CSD) are dominantly semi-logarithmic,lognormal or fractal (scale invariant)”, Journal of Volcanology and Geothermal Research 154 (2006b) 8–16.

[34] Delesse M.A., “Procedé méchanique pour déterminer la composition des roches”, Comptes Rendus de l’academie des sciences (Paris) 25 (1847) 544–545.

[35] Higgins M.D., Roberge J., “Three magmatic components in the 1973 eruption of Eldfell volcano, Iceland: evidence from plagioclase crystal size distribution (CSD) and geochemistry”, Journal of Volcanology and Geothermal Research 161 (2007) 247–260.

[36] Randolph A.D., Larson M.A., “Theory of Particulate Processes”, second edition, New York, Academic Press (1988) 369 pp.

[37] Xisheng Xu., Chun Wan D., Wuxian L., Xinmin Z., “Late Mesozoic intrusive complexes in the coastal area of Fujian SE China: the significance of the gabbro-diorite–granite association”, Lithos 46 (1999) 299–315.

[38] Hanson G.N., “The application of trace elements to the petrogenesis of Igneous rocks of granitic composition”, journal of Earth and planetary science letters 38 (1) (1978) 26-43.

[39] EL-Nisr S.A., EL-Sayed M.M., Saleh G.M., “Geochemistry and petrogenesis of Pan-African late- to postorogenic younger granitoids at Shalatin-Halaib, south Eastern Desert, Egypt”, Journal of African Earth Sciences 33 (2001) 261-282.

[40] Chen B., Jahn B.M., Ye K., Liu J.B. “Cogenetic relationship of the Yangkou gabbro-to-granite unit, Su-Lu terrane”, J. Geol. Soc. London 159 (2002) 457-467.

[41] کاظمی ک.، "پترولوژی و ژئوشیمی توده نفوذی جنوب کی‌کی (جنوب غرب بیارجمند)"، پایان‌‌نامه کارشناسی ارشد زمین‌شناسی (‌گرایش پترولوژی‌)، دانشگاه تهران، پردیس علوم، دانشکده زمین‌شناسی، (1390) 150 صفحه.

[42] حسینی س.ح.، "پترولوژی و ژئوشیمی گرانیت بند هزار چاه بیارجمند"، پایان‌نامه کارشناسی ارشد، دانشگاه تهران، دانشکده علوم، (1374) 147 صفحه.

[43] مسعودی ف.، قربانی م.، رحیم‌زاده ب.، "مطالعه شرایط فیزیکی و تحولات تبلور ماگما در سنگ‌های ولکانیکی شرق قزوین"، فصلنامه زمین‌شناسی ایران، 11 (1388) ص 67-75.