زمین- دما فشارسنجی کانی‌ کوارتز در توده‌‌های نفوذی باتولیت آلموقلاغ (همدان)

نویسندگان

دانشگاه لرستان

چکیده

با توجه به مقاومت زیاد کوارتز در برابر تنش و دگرسانی، این کانی جهت دما- فشارسنجی در توده‌های‌ نفوذی آلموقلاغ  انتخاب ‌شد و برای تعیین دما و فشار تبلور، مقدار Ti  موجود در کوارتز توسط ریزپردازشگر‌الکترونی اندازه‌گیری و میزان فشار و دمای تبلور نقاط بررسی شده، محاسبه گردید. برای تعیین گستره­ی دمایی رشد و تبلور کوارتز، نمودار‌های دما- فشار ترسیم و کنتور‌بندی گردید. نتایج نشان داد که با کنتور‌بندی می‌توان اثرات سوء سیالات فعال و تنش بر دمای تبلور محاسبه شده را کاهش داد. همچنین نتایج حاصل از این مطالعه نشان داد که کانی کوارتز در سنگ‌های متوسط تا قلیایی در یک گستره 683oC  تا 757 و در سنگ های اسیدی در گستره 667 تا 757oC  متبلور شده است. بررسی سیالات درگیر موجود در رگه‌های سیلیسی توسط میکروسکوپ پلاتین‌ گرمایی نشان داد که رگه‌های سیلیسی موجود‌ در سنگ‌های نفوذی‌آلموقلاغ و سنگ‌‌های مجاوربلافصل در دمای بین °C 134 تا °C 255 تشکیل شده‌اند.‌‌

کلیدواژه‌ها


عنوان مقاله [English]

Geothermobarometry of Quartz Crystals in the Intrusive bodies of Almogholagh Batholith, (Hamedan)

نویسندگان [English]

  • manoshehr Amiri
  • ahmad Ahmadi Khalaji
  • zahra Tahmasbi
  • reza Zarei Sahamieh
  • hasan Zamanian
چکیده [English]

Considering the high resistance of quartz against stress and alteration, this mineral was chosen for Geothermobarometry in Almogholagh intrusive masses. To determine the temperature and pressure of crystallization of quartz, the amount of Ti contained in the quartz was measured by Electron Microprobe –Analyzer method and then, the pressure and temperature of crystallization of analyzed points were calculated. The growth and crystallization temperature range of quartz was determined using the P-T diagrams were drawn and contoured. The results show that the negative effects of stress and active fluids on the calculated crystallization temperature can be reduced by contouring. Moreover, in this study, it was found that quartz crystals of intermediate-to-basic rocks and the acidic rocks have been crystallized in a temperature range of 683 to 757 °C and 667 to 741 °C respectively. The examination  of  fluid inclusions in quartz veins by heating and freezing stage microscope showed that silicic veins in intrusive masses and in the immediate adjacent rock have been formed at temperatures between 134 to 255 °C.

کلیدواژه‌ها [English]

  • geothermometry
  • fluid inclusions
  • geobarometry
  • quartz
  • Almogholagh
  • Hamean
[1] Weil J.A., "A review of the EPR spectroscopy of the point defects in α-quartz: the decade 1982-1992", In: Helms, C.R. Deal, BE (ed), the Physics and chemistry of SiO2 and the Si-SiO2 interface.2, Plenum Press, New York, (1993) 131-144.

[2] Weil J.A., "A review of electron spin-spectroscopy and its application to the study of paramagnetic defects in crystalline quartz", Phys Chem Min, 10 (1984) 149-165.

[3] Götze J., Plötze M., "Investigation of trace-element distribution in detrital quartz by Electron Paramagnetic Resonance", Eur. J Miner. 9 (1997) 529-537.

[4] Götze J., Plötze M., Habermann, D., "Origin, spectral characteristics and practical applications of the catodoluminescence (CL) of quartz: A review", Mineralogy and Petrology, 71 (2001) 225-250.

[5] Flem B., Larsen R.B., Grimstvedt A., Mansfeld J., "In situ analysis of trace elements in quartz by using laser ablation inductively coupled plasma mass spectrometry", Chem Geol, 182 (2002) 237–247.

[6] Müller A., Wiedenbeck M., Van den Kerkhof A.M., Kronz A., Simon K., "Trace elements in quartz; a combined electron microprobe, secondary ion mass spectrometry, laser-ablation ICP-MS, and cathodoluminescence study", European Journal of Mineralogy, 15(2003) 747-763.

[7] Huttenlocher H.F., "Kristallstruktur des Aluminum-orthophosphates". Zeitshrift für Kristallogra fie, 90A (1935) 508-516.

[8] Beck W.R., "Crystallographic inversions of the aluminium orthophosphate polymorphs and their relation to silica", J. Am. Ceram. Soc. 32 (1949) 147-151.

[9] Mackey J. H., "An EPR study of impurity related colour centres in aluminium-doped quartz", J. Chem. Phys. 39 (1963) 74-83.

[10] Götze J. Plötze M., Graupner T., Hallbauer D.K., Bray C.J., "Trace element incorporation into quartz: A combined study by ICP-MS, electron spin resonance, cathodoluminescence, capillary ion analysis, and gas chromatography", Geochimica & Cosmochimica Acta, 68 (2004) 3741-3759.

[11] Larsen R.B., Henderson H., Ihlen P.M., Jacamon F., "Distribution and petrogenetic behaviour of trace elements in granitic pegmatite quartz from South Norway", Contributions to Mineralogy and Petrology, 147 (2004) 615-628.

[12] Wark D.A., and Watson E.B., "TitaniQ: a titanium-in-quartz geothermometer", Contributions to Mineralogy and Petrology, 152 (2006) 743-754.

[13] Hayden L.A., Watson, E.B., Wark D.A., "Rutile saturation and TiO2 diffusion in hydrous siliceous melts", American Geophysical :::union:::, Fall Meeting, (2005).

[14] Hayden L.A., Watson E.B., "Rutile saturation in hydrous siliceous melts and its bearing on Ti-thermometry of quartz and zircon", Earth Planet Sci Lett, 258 (2007) 561-568.

[15] Ryerson F.J., Watson, E.B. "Rutile saturation in magmas: implications for Ti–Nb–Ta depletion in island-arc basalts", Earth Planet. Sci. Lett. 86 (1987) 225–239.

[16] Wark D.A., Hildreth W., Spear F.S., Cherniak D.J., Watson E.B., "Pre-eruption recharge of the bishop magma system", Geology, 35 (2007) 235–238.

[17] Wiebe R.A., Wark D.A., Hawkins D.P., "Insights from quartz cathodoluminescence zoninginto crystallization of the Vinalhaven granite", coastal Maine. Contrib Mineral Petro. 154 (2007) 439–453.

[18] Lowers H.A., Rusk B.G., Koenig A., "Application of the titaniq geothermometer to hydrothermal quartz", GSA Denver Annual Meeting abstract, (2007) 226–229.

[19] Ghisoro M.S., Evans B.W., "Thermodynamics of rhombohedral oxide solid solutions and a revision of the Fe-Ti two-oxide geothermometer and oxygen-barometer", American Journal of Science, 308 (2008) 957–1039.

[20] Levien L., Prewitt C.T., Weidner D.J., "Structure and elastic properties of quartz at pressure", Am Mineral 65 (1980) 920–930.

[21] Ostapenko G.T., Gamarnik M.Y., Gorogotskaya L.I., Kuznetsov G.V., Tarashchan A.N., Timoshkova L.P., "Isomorphism of titanium substitution for silicon in quartz: experimental data", Mineral Zh, 9 (1987) 30–40.

[22] Thomas J.B., Watson E.B., Spear F.S., Shemella P.T., Nayakm S.K. Lanzirotti A., "TitaniQ under pressure: the effect of pressure and temperature on the solubility of Ti in quartz", Contrib Mineral Petrol, 160 (2010) 743-759.

[23] Donovan J.J., Lowers H.A., Rusk, B.G., "Improved electron probe microanalysis of elements in quartz", Am Mineral, 96 (2011) 274-282.

[24] Mohajjel M., Fergusson C.L., Sahandi M.R., "Cretaceous-Tertiary convergence and continental collision, Sanandaj-Sirjan zone eastern Iran", J. Asian Earth Sci. 21 (2003) 397-412.

[25] Sephahi A. A., "Typology and petrologenesis of granitic rocks in the Sanandaj-Sirjan metamorphic belt, Iran: with emphasis on the Alvand plutonic complex", N.Jb. Geol Palaontol Abh. 247 (2008) 295-312

[26] Valizadeh M.V., Zarian S., "A petrological study of the Almogholagh, Asadabad and Hamedan plotons. Theran university", J. Sci. 8 (1976) 49-59.

[27] Shabazi H., Siebel W., Ghorbani M., Pourmoafee M., Sepahi A.A., Vousoughi Abedini M., Shang C.C., "The Almogholagh pluton, Sanandj-Sirjan zone, Iran:geochemistry, u-(th)-pb Titanite geochronology and implicationfor its Tectonic evolution", N. Jb. miner. Abh. (J.Min. Geochem.) 192 (2015) 85-99.

[28] امیری م.، ویژگی‌های ژئوشیمیایی و پترولوژیکی گرانیتوئیدهای‌آلموقلاق (شمال اسدآباد- همدان)، پایان نامه دکترای پترولوژی، دانشگاه لرستان، (1395).

[29] Cox K.G., Bell, J.D. and Pankhurst, R.J. "The interpretation of Igneous rocks," Springer/Chapman & Hall (1979) 450p.

[30] Debon F., Le Fort P., "A chemical- mineralogical classification of common plutonic rocks and associations", Trans Roy Soc Edinb Earth Sci. 73 (1983) 135-149

[31] De La Roche H., Leterrier J., Grandclaude P., Marchal M., "A classification of volcanic and plutonic rocks using R1R2-diagram and major-element analyses-its relationships with current nomenclature", Chemical Geology 29(1980) 183-210.

[32] Middlemost E.A.K., "Magmas and magmatic rocks: an introduction to igneous petrology", United States, John Wiley and Sons Inc. New York NY(1986).

[33] Middlemost E.A.K.,"Naming materials in the magma/igneous rock system", Earth Sci. Rev. 37 (1994) 215-224.

[34] Jacamon F. "The significance of textures and tracem element chemistry of quartz with regard to the petrogenesis of granitic rocks Doctoral Thesis For the degree of Philosophiae Doctor (PhD)", Norwegian University of Science and Technology, (2006).

[35] Tulloch A.J., Challis G.A., "Emplacement depths of Paleozoic-Mesozoic plutons from western New Zealand estimated by Hornblende-Al Geobarometry", New Zea-land Journal of Geology and Geophysics 43 (2000) 555-567.

[36] Anderson J. L., Barth A.P., Wooden J.L., Mazdab F., "Thermometers and Thermobarometers in Granitic Systems", Reviews in Mineralogy & Geochemistry, Mineralogical Society of America. 69 (2008) 121-142.

[37] Ghent E. D., Nicholls J., Siminy P.S., Sevigny H.H., Stout M. Z., "Hornblende Geobarometry of the Nelson batholith, Southeastern British Columbia: Tectonic Implications", Canadian J. Earth Sci., 28 (1991) 1982-1991.