A study of structural, electrical and magnetic properties of zinc ferrite nanoparticles doped with chromium

Abstract

In this paper, the chromium doped spinel zinc ferrite nanoparticles were synthesized by using of glycine as a fuel with microwave combustion method. After preparing the samples  with x = 0.0, 0.5, 1.0, 1.5, 2.0, the electromagnetic and electrical properties such as dielectric constant, ac conductivity, dielectric loss factor (and Curie temperature were investigated. According to the results, increasing of the amount of chromium in samples causes to increase the real and imaginary part of dielectric constant. Although the chromium ions do not participate in transporting electrons between Fe+2 and Fe+3, they cause reduction in transporting electrons. For a typical sample, the imaginary and real parts of dielectric constant and dielectric losses decrease and ac conductivity increases with increasing frequency, which is natural feature of ferrites. These results are described by Maxwell-Wagner model and Koops's theory. Also, the results show that the Curie temperature of samples increased a chromium added.

Keywords


[1] Snelling E.C., “Soft Ferrites: Properties and Applications”, second ed., Butterworth Publishing, London (1989).

[2] Reddy B. R., Sivasankar T., Sivakumar M., Moholkar V. S., “Physical facets of ultrasonic cavitational synthesis of zinc ferrite particles”, Ultrasonics Sonochemistry 17 (2010) 416–426.

[3] Gill N.K., Puri R.K., “Mossbauer study of Li0.5Fe2.5-xCrxO4 ferrites”, Spectrochimica Acta 41,A (1985) 1005–1008.

[4] El-Sayed A.M., “Effect of chromium substitutions on some properties of NiZn ferrites”, Ceramics International 28 (2002) 651–655.

[5] Manikandan A., Judith Vijaya J., John Kennedy L., Bououdina M., “Structural, optical and magnetic properties of Zn1_xCuxFe2O4 nanoparticles prepared by microwave combustion method”, Journal of Molecular Structure 1035 (2013) 332–340.

[6] Manikandan A., JohnKennedy L., Bououdina M., JudithVijaya J., “Synthesis, Optical and magnetic properties o pure and Co-doped ZnFe2O4 nanoparticles by microwave combustion method”, Journal of Magnetism and Magnetic Materials, 349 (2014) 249–258.

[7] Manikandan A., Judith Vijaya J., Sundararajan M., Meganathan C., John Kennedy L., Bououdina M., “Optical and magnetic properties of Mg-doped ZnFe2O4 nanoparticles prepared by rapid microwave combustion method”, Superlattices and Microstructures 64 (2013) 118–131.

[8] Manikandan A., Judith Vijaya J., John Kennedy L., Bououdina M., “Microwave combustion synthesis,structural,optical and magnetic properties of Zn1_xSrxFe2O4 nanoparticles”, Ceramics International 39 (2013) 5909–5917.

[9] Sebastian R. M., Maniammal K., Xavier Sh., Mohammed E. M., “Structural and dielectric studies of Cr3+ doped ZnFe2O4 nanoparticles”, Nano Studies 8 (2013)121-130.

[10] Xu Y., Liang Y., Jiang L., Wu H., Zhao H., Xue D., “Preparation and Magnetic Properties of ZnFe2O4 Nanotubes”, Journal of Nanomaterials 5 (2011) 1-5.

[11] Raeisi Shahraki R., Ebrahimi M., Seyyed Ebrahimi S.A., Masoudpanah S.M., “Structural characterization and magnetic properties of superparamagnetic zinc ferrite nanoparticles synthesized by the coprecipitation method”, Journal of Magnetism and Magnetic Materials 324 (2012) 3762–3765.

[12] Weiding Li., "Synthesis and characterization of nanocrystalline CoAl2O3 spinel powder by low temperature combustion”, Journal of the European Ceram Soc. 23 (2003) 2289-2295.

[13] زرگرشوشتری م.، سلطانی م.، موسوی قهفرخی س. ا.، "ساخت نانو ذرات فریت روی آلاییده با کروم به‌روش احتراق مایکروویوی"، بیست و دومین همایش بلورشناسی و کانی‌شناسی ایران، دانشگاه شیراز.

[14] Sebastian R. M., Maniammal K., Xavier Sh.. Mohammed E. M., “Structural and dielectric studies of Cr3+ doped ZnFe2O4 nanoparticles”, nano studies 8 (2013) 121-130.

[15] Brhan A. I., Hulea V., Iordan A. R., Palamaru M. N., “Cr3+ and Al3+ co-substituted zinc ferrite: Structural analysis, magnetic and electrical properties”, Polyhedron 70 (2014) 110–118.

[16] El-Sayed A. M., “Effect of chromium substitutions on some properties of NiZn ferrites”, Ceramics International 28 (2002) 651–655.

[17] Jacob B. P., Thankachan S., Xavier S., Mohammed E.M., “Dielectric behavior and AC conductivity of Tb3+ doped Ni0.4Zn0.6Fe2O4 nanoparticles”, Journal of Alloys and Compounds 541 (2012) 29–35.

[18] Koops C. G., "On the Dispersion of Resistivity and Dielectric Constant of Some Semiconductors at audiofrequencies", Vol. 83, 1 (1951) 121-126.



[19] Tan M., Koseo˘glu Y., Alan F., enturk E., “Overlapping large polaron tunneling conductivity and giant dielectric constant in Ni0.5Zn0.5Fe1.5Cr0.5O4 nanoparticles (NPs)”, Journal of Alloys and Compounds 509 (2011) 9399– 9405.

[20] Kadam R. H., Karim A., Kadam A. B., Gaikwad A. S., Shirsath S. E., “Influence of Cr3+ substitution on the electrical and magnetic properties of Ni0.4Cu0.4Zn0.2Fe2O4 nanoparticles”, International Nano Letters (2012).

[21] Ashiq M. N., “Effect on Physical, Electrical and Magnetic Properties of Strontium Hexaferrite Nanomaterial Doped with Binary Mixtures of Various Metal Ions”, Thesis, Department of Chemistry Quaid-I-Azam University islamabad, (2009).

[22] Pervaiz E., Gul I.H., “Structural, Electrical and Magnetic Studies of Gd 3+ doped Cobalt Ferrite Nanoparticles”, International Journal of Current Engineering and Technology ISSN (2012) 2277 – 4106.

[23] Verma A., Goel T.C., Mendiratta R.G., Kishan P., “Magnetic properties of nickel-zinc ferrites prepared by the citrate precursor method”, Journal of Magnetism and Magnetic Materials 208 (2000) 13-19.

[24] Hankare P.P., Sankpal U.B., Patil R.P., Jadhav A.V., Garadkar K.M., Chougule B.K., “Magnetic and dielectric studies of nanocrystalline zinc substituted Cu–Mn ferrites”, Journal of Magnetism and Magnetic Materials 323 (2011) 389–393.

[25] Verma K., Kumar A., Varshney D., “Effect of Zn and Mg doping on structural, dielectric and magnetic properties of tetragonal CuFe2O4”, Current Applied Physics 13 (2013) 467-473.