An investigation on structural and magnetic properties of praseodymium substituted yttrium iron garnet nanoparticles

Abstract

Praseodymium ion (Pr3+) substituted yttrium iron garnet nanoparticles PrxY3-xFe5O12 (x = 0.0, 0.1, 0.2, 0.3, 0.4) were fabricated by the sol-gel method. X-ray diffraction (XRD) patterns confirmed the pure garnet structure for all samples. The chemical bonds and the garnet phase were studied by using Far-FTIR. The magnetic hyperfine parameters were obtained by MÖssbauer spectroscopy and confirmed the VSM results. The results of vibrating sample magnetometer (VSM) represents that saturation magnetization increases with increasing praseodymium ion concentration for the samples with x = 0.0 to x = 0.2 and then decreases up to x = 0.4. These changes assigned to the Neel theory, Pr3+ substituted at c site and the spin canting due to the sublattice splitting.

Keywords


[1] Kum J. S., Kim S. J., Shim I. B., Kim Ch. S., "Magnetic properties of Ce substituted yttrium iron garnet ferrite powders fabricated using a sol-gel method", Journal of Magnetism and magnetic Materils 272–276 (2004) 2227–2229.

[2] Yang J. H., Zhang X. J., "Quantum Theory of the magneto-optical effect of Ce-substituted yttrium iron", Physical Rewiew B 50 (1994) 13428–13434.

[3] Geller M., Gilleo A., "The crystal structure and ferrimagnetism of YIG", The Journal of Physical and chemistry of solids 3 (1957) 30–36.

[4] Cheng Z., Cui Y., Yang H., Chen Y., "Effect of lanthanum ions on magnetic properties of Y3Fe5O12 nanoparticles", Journal of Nanoparticle Research 11 (2009)1185–1192.

[5] Vaqueiro P., Lo´pez-Quintela M. A., "Influence of complexing agents and pH on yttrium-iron garnet synthesized by the sol-gel method", Chemistry of Materials 9 (1997) 2836–2841.

[6] Cheng Z. J., Yang H., "Synthesis and magnetic properties of Sm–Y3Fe5O12 nanoparticles ", Physica E 39(2007) 198–202.

[7] Özgür Ü., Alivov Ya. I., and Morkoç H., "Microwave ferrites, Part 1: Fundamental properties ", Journal of Materials Science: Mater. Electron. 20 (2009) 789-834.

[8] K. Sadhana, S. R. Murthy, K. Praveena, "Effect of Sm3+ on dielectric and magnetic properties of Y3Fe5O12 nanoparticles.", Journal of Materials Science: Materials in Electronics 25 (2014) 5130-5136.

[9] Cheng Z., Yang H., "Magnetic properties of Nd-Y3Fe5O12 nanoparticles", Journal of Material Science, Mater Electron, 18 (2007) 1065–1069.

[10] Y.G. Chukalki, "Effect of alloying by gadolinium on the magnetic properties of irradiation-amorphized oxides of the Y3-xGdxFe5O12 system", The Physics of Metals and Metallography 113 (2012) 349-355.

[11] Gomi M., Toyoshima H., "Magneto-optical enhancement in sputtered epitaxial films of praseodymium-substituted yttrium iron garnet", Journal of Applied Physics 82 (1997) 1359-1362.

[12] Guo L, Huang K, Chen Y., "Mild hydrothermal synthesis and ferrimagnetism of Pr3Fe5O12 and Nd3Fe5O12 garnets", Journal of Solid State Chemistry, 184:1048-1053.

[13] Espinosa G. P., "Crystal chemical study of the rare-earth iron garnets", Journal of Chemical Physics 37 (1962)2344–2347.

[14] Cheng Z., Yang H., Yu L., Xu W., "Saturation magnetic properties of Y3–xRexFe5O12 (Re: Gd, Dy, Nd, Sm and La) nanoparticles grown by a sol–gel method", Journal of Materials Science: Materials in Electronics 19 (2008) 442–447.

[15] Hofmeister A.M., Campbell K.R., "Infrared spectroscopy of yttrium aluminum, yttrium gallium, and yttrium iron garnets", Journal of Applied Physics 72 (1992) 638–646.

[16] Al-Thabaiti Sh. A., "Synthesis and characterization of a new cobalt polymeric spinels", Communications de la Facult´e des Sciences de l’Universit´e d’Ankara B 49 (2003) 5–14.

[17] Beregi E., Period E., Polytech H., "IR spectroscopic investigation of the garnet materials used in the microwave electronics", Chemical Engineering 30 (1986) 235–246.

[18] Lataifeh M. S., Mahmood S., Thomas M. F., "Mössbauer spectroscopy study of substituted rare-earth iron garnets at low temperature ", Journal of Physica B Condensed Matter 321 (2002) 143-148.

[19] Guo L., Yuan L., Peng W., "Synthesis and ferrimagnetic behaviour of Mn doped rare earth iron garnets ", Chemical Research in Chinese Universities 28 (2012) 391-394.

[20] Niyaifar M., Mohammadpour H., "Study on magnetic role of Bi3+ ion by random cation distribution model in Bi–YIG system", Journal of Magnetism and Magnetic Materials 396 (2015) 65-70.

[21] Niyaifar M., Khalafi N., Hasanpour A., "Influence of Cerium Substitution on The Microstructure and Magnetic Properties of Yttrium Iron Garnet, Prepared via Sol-Gel Method", Iranian journal of crystallography and mineralogy 21 (2013) 183-190.

[22] Cheng Z., Cui Y., Yang H., Chen Y., "Effect of lanthanum ions on magnetic properties of Y3Fe5O12 nanoparticles", Journal of Nanoparticle Research 11 (2009) 1185–1192.

[23] Waerenborgh J. C., Rojas D. P., Shaula A. L., "Defect formation in Gd3Fe5O12-based garnets: a Mössbauer spectroscopy study", Materials Letters 58 (2004) 3432–3436.

[24] Lataifeh M. S., Lehlooh A. D. "Mossbauer spectroscopy study of substituted yttrium iron garnets", Solid State Communications 9 (1996) 805–807.

[25] Hanna S., Heberle S.J., Perlow G.J., Preston R.S., Vinsent D.H., "Polarized Spectra and Hyperfine Structure in Fe57", Physical Review Letters 4 (1960) 177–180.

[26] Preston R.S., Hanna S., Heberle S.J., "Mössbauer Effect in Metallic Iron", Physical Review 128 (1962) 2207–2218.

[27] Watson R.E., Freeman A.J., "Origin of Effective Fields in Magnetic Materials", Physical Review 123 (1961) 2027–2047.

[28] Walker L.R., Wertheim G.K., Jaccarino V., "Interpretation of the Fe57 Isomer Shift", Physical Review Letters 6 (1961) 98–101.