Determining the physical crystallization condition of Lakhshak granodiorite pluton and its dykes

Abstract

The Lakhshak pluton, a part of Zahedan-Saravan granitoid belt, is located about 15 km NW of the Zahedan city. The plutonic rocks are granodiorite in composition and are cut by a numerous of microdiorite and dacite dykes. The rocks of Lakhshak pluton consist of plagioclase (oligoclase-andesine), K-feldspar, quartz, biotite, amphibole (pargasite - edenite), sphene, apatite and opaque minerals. In this research, the composition of these minerals have been considered as the geo-thermometer and geo-barometer, hence they have good potential for calculating crystallization and emplacement conditions of a magma and tectonic setting. The presence of calcic amphiboles and primary biotite are evidence of Lakhshak pluton igneous origin (I). The amount of Altot in the pluton amphiboles are 1.02 to 1.32 representing the pluton emplacement at the depth of 3.8 to 8.4Km; while the core of those amphiboles analyzed from dikes contain Altot = 1.9-2.3 showing the depth of magma chamber in middle-lower crust (16.9-23 Km) as these dykes are thin and cooled fast after emplacment. The thermometry done on Lakhshak pluton and its dykes indicated cessation of exchange and equilibrium of minerals temperatures 645-732ºC for pluton, 730-824ºC for dacite dikes and for andesitic dikes are 808-945ºC. Moreover, biotites were plot in calc-alkaline field of Abdul Rahmans diagram, which represents the Lakhshak pluton might be formed in an active continental margin during the subduction of Sistan oceanic lithosphere beneath Afghan Block.

Keywords


[1] رضائی کهخائی م.، "پتروژنز و جایگاه تکتونیکی توده گرانیتوئیدی لخشک و دایکهای آن (شمال غرب زاهدان)"، دانشگاه تهران، دانشکده زمین شناسی، (1385) 134 صفحه.

[2] Stocklin J., "Structural history and tectonics of Iran: A review", American Association of Petroleum Geologists Bulletin 52 (1968) 1229-1258.

[3] Berberian M., King G. C. P., "Towards a paleogeography and tectonic evolution of Iran" Canadian Journal of Earth Sciences, 18 (1981) 210-265.

[4] Tirrul R., Bell I.R., Griffis R.J., Camp V.E., "The Sistan suture zone of eastern Iran" Geological Society of America Bulletin 94(1983) 134-150

[5] Rezaei-Kahkhaei M., Kananian A., Esmaeily D., Asiabanha A. "Geochemistry of the Zargoli Granite: Implications for development of the Sistan Suture Zone, southeastern Iran". Island Arc 19 (2010) 259-276.

[6] صادقیان م.، "ماگماتیسم، متالوژنی و مکانیسم جایگزینی توده گرانیتوئیدی زاهدان"، رساله دکتری، دانشگاه تهران، دانشکده علوم، گروه زمین شناسی (1380).

[7] قاسمی ح.، صادقیان م.، کرد م.، خانعلی‌زاده ع.، "سازوکار شکل‌گیری باتولیت گرانیتوئیدی جنوب زاهدان، جنوب شرق ایران"، انجمن بلور شناسی و کانی شناسی ایران (1388).

[8] Camp V.E., Griffis R.J., "Character, genesis and tectonic setting of igneous rocks in the Sistan suture zone, Eastern Iran" Lithos, 15 (1982) 221–239.

[9] کنعانیان ع.، رضایی کهخایی م.، اسماعیلی د.، "سنگ شناسی و جایگاه زمین ساختی توده گرانودیوریتی لخشک، شمال باختر زاهدان، ایران"، علوم زمین 65 (1386) 126-143.

[10] کنعانیان ع.، رضایی کهخایی م.، رضایی م.، اسماعیلی د.،" شواهد پتروگرافی حاکی از دگرشکلی دمای بالا در سنگ های حاشیه توده گرانیتوئیدی لخشک، شمال غرب زاهدان، ایران"، مجله علوم دانشگاه تهران 33 (1386) 39-47.

[11] Kretz R. "Symbols for rock-forming minerals" American Mineralogist, 68 (1983) 277-279.

[12] Middlemost E.A.K., "Magmas and Magmatic Rocks" Longman, London (1985).

[13] Nachit H., Ibhi A., Abia H., Ben Ohoud M., ''Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites''. C.R. Geosciences, 337(2005) 1415-1420.

[14] Forster H.J., Tischendorf G., ''Reconstruction of the volatile characteristics of granitoidic magmas and hydrothermal solutions on the basis of dark micas: the Hercynian postkinematic granites and associated high-temperature mineralizations of the Erzgebirge'', (G.D.R). Chemie der Erade (Geochemistry), 49(1989) 7-20.

[15] Nachit H., Razafimahefa N., Stussl J.M., Carron J.P., ''Composition Chimique des biotites et typology magmatique des granitoides''. C.R. Acad. Sci., 301(1986) 813-818.

[16] Abdel-Rahman A.M., ''Nature of biotites from alkaline, Calc-alkaline and peraluminous magmas''. J. Petrol, 35(1994) 525-541.

[17] Sial A.N., Ferreira V.P., Fallick A.E., Jeronimo M., Cruz M., "Amphibole- rich clots in calc-alkalic granitoids in the Borborema province northeastern Brazil", Journal of South American Earth Science, 11 (1998) 457-471.

[18] Stein E., Dietl E., "Hornblende thermo barometry of granitoids from the central Odenwald (Germany) and their implication for the geotectonic development of the Odenwald", Mineralogy and Petrology, 72 (2001) 185-207.

[19] Leake B.E., Woolly, A.R., Arps C.E.S., Birch W.D., Gilbert, M.C., Grice, J.D., Hawthorne, F.C., Kato, A., Kisch, H.J., Krivovichev, V.G., Linthout, K., Laird, J., Mandarino, J., Maresch, W.V., Nickel, E.h., Rock, N.M.S., Schmucher, J.C., Smith, D.C., Stephenson, N.C.N, Unungaretti, L., Whittaker, E.J.W. and Youzhi, G., "Nomenclature of Amphiboles. Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals Names", Europian Journal of Mineralogy, 9(1997) 623-651.

[20] Elkins L.T., Grove T.L.,"Ternary feldspar experiments and thermodynamic models", American Mineralogist, 75(1990) 544-559,

[21] Deer W.A., Howie, A., Zussman J., ''An interduction to the rock – forming minerals'', 17th ed., Longman Ltd (1986) 528.

[22] Cosca M. A., Essene E. J., Bowman J. R. "Complete chemical analyses of metamorphic constrains on their P–T dependence", European Journal of Mineralogy, 5 (1991) 231–291.

[23] Hammarstrom j.m., Zen, E., "Aluminum in hornblende: An empirical igneous geobarometer", American Mineralogist, 71(1986) 1297-1313.

[24] Hollister L.S., Grissom G.C., Peters, E.K., Stowell, H.H. and Sisson, V.B., "Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of clac-alkaline plutons", American Mineralogist, 72 (1987) 231-239.

[25] Johnson M.C., Rutherford M.J., "Experimental calibration of the aluminum-in-hornblende geobarometer with applications to Long Valley Caldera (California) volcanic rocks", Geology, 17 (1989) 837-841.

[26] Schmidt M.W., "Amphibole composition in tonalite as a function of pressure an experimental calibration of the Al-hornblende barometer" Contribution to Mineralogy and Petrology, 110 (1992) 304-310.

[27] Helmy H. M., Ahmed A. F., El Mahallawi M. M., Ali, S. M., ''Pressure, temperature and oxygen fugacity conditions of calc-alkaline granitoids, Eastern Desert of Egypt, and tectonic implications. Journal of African'', Earth Sciences, 38 (2004) 255–268.

[28] Blundy J.D., Holland T.J.B., "Calcic amphibole equilibria and a new amphibole- plagioclase geothermometer" Contribution to Mineralogy and Petrology, 104 (1990) 208-224.

[30] Engle A.E.J., Engle C.G. "Progressive metamorphism and granitization of the major paragneiss, northwest Adirondack Moountains, New York", Part 2. Mineralogy. Geological Society of America Bulletin, 71 (1960) 1-58.

[29] Vyhnal C.R., Mcsween H.Y., Speer J.A., "Hornblende Chemistry in Southern Appalachian Granitoids: implications for aluminum hornblende thermo barometry and magmatic epidote stability". American Mineralogist, 76 (1991) 176-188.

[31] Henry D. J., Guidotti C. V., ''Titanium in biotite from metapelitic rocks: Temperature effects, crystal-chemical controls, and petrologic applications'', American Mineralogist, 87 (2002) 375-382.

[32] Huaimin X., Shuwen D., Ping J., "Mineral chemistry, geochemistry and U-Pb SHRIMP zircon data of the Yangxin monzonitic intrusive in the foreland of the Dabie orogen Science in China: Series D", Earth Sciences, 49 (2006) 684-695.

[33] Koroll H., Evangelakakkis C., Voll G., "Two feldspar Geothermometry: a review and revision for slowly cooled rocks", Contributions to Mineralogy and Petrology, (1993) 510–518.

[34] Anderson J.L., "Status of thermo-barometry in granitic batholiths", Earth Science Review, 87 (1996) 125-138.

[35] Wones D. R., ''Significance of the assemblage titanite + magnetite +quartz in granitic rocks'', American Mineralogist, 74 (1989) 744– 749.

[36] Enami M., Suzuki K., Liou J.G., Bird, D.K., ''Al–Fe3+ and F– OH substitutions in titanite and constrains on their P–T dependence'', European Journal of Mineralogy, 5 (1993) 231–291.