The investigation of surface soil geochemistry and mineralogical role in the heavy metal bioavailability of Sabzevar area

Abstract

Surface soils of Sabzevar zone could be geochemically divided into two groups of serpentine (Se) and non-serpentine (Nse) soils. Serpentine soils have higher MgO, FeOt, CaO, S, Ag, Co, Cr, Cu and Ni and lower SiO2, Al2O3, Na2O, K2O, Be, Li, Sc, Ti, U and V than Nse. In other word, Nse samples have high REE content with fractionated LREE/HREE trends in REE diagrams (ΣREE= 31.89- 58.3 ppm; LaN/YbN = 4.36- 5.68); while REE content of Se soils is lower and REE trends show LREE depletion (ΣREE = 12.29- 18.68 ppm; LaN/YbN= 0.69- 0.77). All studied soil samples have higher Ni, Cr and Co concentrations than environmental standard limitations. Heavy metal extraction by DTPA method shows that Se soils have higher bioavailability relative to other soils. Heavy metal analyses of alfalfa plants cultivated in different soils approves higher bioconcentration of these metals in Se soil samples. All studied soils display similar physico- chemical properties (pH, TOC and CEC) and mineralogical differences are the main factors controlling heavy metal bioavailability of Sabzevar soils. The existence of resistant oxide minerals in NSe soils inhibits the release of heavy metals and reduce bioavailable concentration of these elements; while structurally more open minerals like serpentine and talc led to higher availability of heavy metals in Se soils.

Keywords


[1] Hooda P.S. “Trace elements in soils, Wiley publication”, (2010) 596p.

[2] مظهری س.ع.، مظلومی بجستانی ع.ر.، شریفیان عطار ر.، "نقش عناصر کمیاب در زمین شیمی زیست محیطی”، انتشارات سخن گستر، 340 صفحه (1392).

[3] Siebecker M., “Nickel Speciation in serpentine soils using synchrotron radiation techniques”, 19th World Congress of Soil Science: Soil solutions for a changing world. International :union: of Soil Sciences (IUSS), (2010) 160- 162.

[4] Tashakor M., Wan Zuhairi W.Y., Hamzah M., “Speciation and availability of Cr, Ni and Co IN serpentine soils of Ranau, Sabah”, AJG 2 (2013) 4.

[5] Iizuka Y., Hseu Z.Y., Tsai H., Cheng C.H., Jien S.H., Chang Y.H., “Pedogenic chromium and nickel partitioning in serpentine soils along a toposequence”, Soil Science Society of America Journal. 75 (2011) 659-668.

[6] Kierczak J., Neel C., Aleksander-Kwaterczak U., Helios-Rybicka E., Bril H., Puziewicz J., “Solid speciation and mobility of potentially toxic elements from natural and contaminated soils: A combined approach”, Chemosphere 73 (2008) 776-784.

[7] Garnier J., Quantin C., Guimaraes E., Garg V.K., Martins E.S., Becquer T., “Understanding the genesis of ultramafic soils and catena dynamics in Niquelandia, Brazil”, Geoderma 151 (2009) 204-214.

[8] Mazhari S.A., Mazloumi Bajestani A.R., Sharifian Attar R., “Geochemical Investigation of Davarzan Surface Soils, West of Sabzevar, NE Iran”, Iranian Journal of Earth Sciences 5 (2013) 43-53.

[9] Mazhari S.A., Sharifian Attar R., “Rare earth elements in surface soils of the Davarzan area, NE of Iran”, Geoderma Regional, 5 (2015) 25–33.

[10] Pilger A., "Die zeitlich-tektonische Entwicklung der iranischen Gebirge", Clausthaler Geol Abh 8 (1971) 1–27.

[11] Alavi M., "Tectonic Map of the Middle East, Scale 2,500,000", (1991) Geological Survey of Iran, Tehran.

[12] Khalatbari Jafari M., Babaie H.A., Gani M., "Geochemical evidence for Late Cretaceous marginal arc-to-backarc transition in the Sabzevar ophiolitic extrusive sequence, northeast Iran", Journal of Asian Earth Sciences, 70-71 (2013) 209–230.

[13] Shafaii Moghadam H., Zaki Khedr M., Arai S., Stern R.S., Ghorbani G., Tamura A., Ottley C., "Arc-related harzburgite–dunite–chromitite complexes in the mantle section of the Sabzevar ophiolite, Iran: A model for formation of podiform chromitites", Gondwana Research 27 (2015) 575-593.

[14] Rossetti F., Nasrabadi M., Vignaroli G., Theye T., Gerdes V., Razavi M. H., Moin Vaziri H., "Early Cretaceous migmatitic mafic granulites from the Sabzevar range (NE Iran): implications for the closure of the Mesozoic peri-Tethyan oceans in central Iran", Terra Nova 22 (2010) 26-34.

[15] نصرآبادی م.، روزتی ف.، معین‌وزیری ح.، رضوی س.م.ح.، محجل م.، "کانی‌شناسی و دما- فشارسنجی شیست‌های آبی مجموعه‌ی دگرگونی سلطان آباد (شمال شرق سبزوار)"، مجله بلورشناسی و کانی‌شناسی ایران، شماره 20 (1391) ص 140-121.

[16] Khalatbari Jafari M., Babaie H.A., Mirzaie M., "Geology, petrology and tectonomagmatic evolution of the plutonic crustal rocks of the Sabzevar ophiolite, northeast Iran", Geological Magazine, 150 (2013) 862-884.

[17] Alamnia Z., Karimpour M.H., Homam S.M., Finger F., "The magmatic record in the Arghash region (northeast Iran) and tectonic implications", International Journal of Earth Science, 102 (2013) 1603-1625.

[18] قورچی روکی م.، کریمپور م.ح.، ابراهیمی نصرآبادی خ.، "تعیین سن، منشأ و جایگاه تکتونیکی توده‌های نفوذی جنوب سبزوار"، پترولوژی، شماره 16 (1392) ص 20-1.

[19] Mazhari S.A. “Petrogenesis of adakite and high-Nb basalt association in the SW of Sabzevar Zone, NE of Iran: Evidence for slab melt-mantle interaction”, Journal of African Earth Sciences, 116 (2016) 170-181.

[20] مظهری س.ع.، مجتهدی فر و.، جعفریان ع.، "ژئوشیمی، سنگ زایی و کانی زایی سنگهای نفوذی نامن، جنوب غربی پهنه سبزوار"، مجله بلورشناسی و کانی شناسی ایران، شماره 23 (1394) ص 532-517.

[21] نبوی م.ح.، “دیباچه‌ای بر زمین شناسی ایران”، انتشارات سازمان زمین شناسی (1355).

[22] Lensch G., Mihm A., Alavi Tehrani N., “Petrography and geology of the ophiolite belt north of Sabzevar Khorasan (Iran)”, Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 131 (1977) 156-178.

[23] Schumacher B.A., “Methods for the determination of total organic carbon (TOC) in soils and sediments”, Ecological Risk Assessments Support Center Office of Research and Development US. Environmental Protection Agency (2002).

[24] Lindsay WL, Norvell WA., “Development of a DTPA soil test for zinc, iron, manganese and copper”, Soil Science Society America Journal 42 (1978) 421–428.

[25] Echevarria G., Massoura S. T., Sterckeman T., Becquer T., Schwartz C., Morel J. L., “Assessment and control of the bioavailability of nickel in soils”, Environmental Toxicology and Chemistry, 25 (2006) 643–651.

[26] معاونت محیط زیست انسانی، "دفتر آب و خاک، استانداردهای کیفیت منابع خاک و راهنمای آن"، انتشارات سازمان محیط زیست (1392) 166 صفحه.

[27] Muller G., “Index of geoaccumulation in sediments of the Rhine River”, Geology Journal 2 (1969) 108–118.

[28] Sun S. S., McDonough W. F., "Chemical and isotopic systematics of oceanic of basalts: implication for mantle composition and processes". In: Magmatism in oceanic basins (Eds. Saunders, A. D. and Norry, M. J.) Geological Society of London (1989) 42 313-345.

[29] Turekian K.K., Wedepohl K.H., “Distribution of the elements in some major units of the earth’s crust”, Geological Society of American Bulletin., 72 (1961) 175–192.

[30] Quantin C., Ettler V., Garnier J., Sebec O., “Sources and extractibility of chromium and nickel in soil profiles developed on Czech serpentinites”, C. R. Geoscience 340 (2008) 872–882.

[31] Kraemer S., Hering J., “Biogeochemical controls on the mobility and bioavailability of metals in soils and groundwater”, Aquatic Sciences 66 (2004) 1–2.

[32] Rodríguez L., Ruiz E., Alonso-Azcárate J., Rincón J., “Heavy metal distribution and chemical speciation in tailings and soils around a Pb–Zn mine in Spain”, Journal of Environmental Management 90 (2009) 1106–1116.

[33] Rajapaksha A. U., Vithanage M., Oze C., Bandara W. M. A. T., Weerasooriya R., “ Nickel and manganese release in serpentine soil from the Ussangoda ultramafic complex, Sri Lanka”, Geoderma, 189-190 (2012) 1–9.

[34] Alves S., Trancoso M. A., Gonçalves M. d. L. S., Correia dos Santos M. M., “A nickel availability study in serpentinised areas of Portugal”, Geoderma, 164 (2011) 155–163.

[35] Hsiao K.H., Bao K.H., Wang S.H., Hseu Z.Y., “Extractable Concentrations of Cobalt from Serpentine Soils with Several Single-Extraction Procedures”, Communications in Soil Science and Plant Analysis 40 (2009) 2200–2224.