کانی شناسی فازهای مختلف تشکیل رودینگیت در دایک های مجموعه افیولیتی پروتروزوئیک بالایی شمال انارک

نویسندگان

1 دانشگاه تربیت مدرس

2 دانشگاه کانازاوا،

3 مرکز تحقیقات و توسعه متالوژی

4 سازمان زمین شناسی و اکتشافات معدنی کشور.

چکیده

در شمال منطقه انارک در درون سنگ‌های افیولیتی پروتروزوئیک بالایی، رودینگیت‌ها و سنگ‌های رودینگیتی به دو صورت توده‌ای و رگه‌ای وجود دارند. در این مجموعه افیولیتی، دو نسل از رودینگیت‌های رگه‌ای را می‌توان مشاهده کرد. رودینگیت‌های توده‌ای یا استاتیک مربوط به زمان گسترش پوسته اقیانوسی و تشکیل افیولیت، رودینگیت‌های رگه‌ای یا دینامیک مربوط به زمان جایگیری افیولیت شمال انارک، یا فعالیت‌های زمین‌ساختی می‌باشند. کانیهای موجود در رودینگیت‌های توده‌ای به ترتیب فراوانی عبارتند از: گارنت (آندرادیت کرم‌دار)، ایدوکراز، کلریت، دیوپسید، پرهنیت، و اپیدوت. در حالی که ترتیب فراوانی کانیهای موجود در رودینگیت‌های رگه‌ای نسل اول به صورت دیوپسید، کلریت، ایدوکراز، و گارنت (آندرادیت تیتان دار)، و در رودینگیت‌های رگه‌ای نسل دوم به ‌صورت دیوپسید، کلریت، و گارنت (آندرادیت) است. بررسی‌های سنگ‌شناسی، و ژئوشیمی کانی‌ها نشان می‌دهد که در زمان تشکیل رودینگیت‌های توده‌ای، فعالیت یون‌های کلسیم، آهن، و کرم، و در زمان تشکیل رودینگیت‌های رگه‌ای نسل اول فعالیت یون‌های کلسیم، سیلیسیم، منیزیم، آلومینیوم، تیتانیوم، و OH- بالاتر بوده است. در مورد رودینگیت‌های رگه‌ای نسل دوم نیز می‌توان گفت که شبیه رودینگیت‌های رگه‌ای نسل اول بوده و تنها به دلیل عدم وجود ایدوکراز، و نبود Ti در ساختار آندرادیت، فعالیت یون‌های Ti ,Fe و Al نسبت به رودینگیت‌های رگه‌ای نسل اول کمتر است. به‌ طور کلی رودینگیت‌های توده‌ای نسبت به رودینگیت‌های رگه‌ای تنوع کانی‌شناسی بیشتری دارند.

کلیدواژه‌ها


عنوان مقاله [English]

Mineralogy of different phases of Rodingite formation in dikes of Anarak upper Proterozoic Ophiolite (NE of Isfahan province, Iran)

چکیده [English]

In north of Anarak area, in the upper Proterozoic ophiolite, exist Massive and Vein type Rodingites. Vein type rodingites have formed in two phases. Massive or Static rodingites have formed during oceanic crust spreading and ophiolite formation, and Vein type or Dynamic rodingites have formed during Anarak ophiolite emplacement and tectonic activities. Abundance order of minerals in massive rodingites is Garnet (Chromian-Andradite), Idocrase, Chlorite, Diopside, Prehnite and Epidote (decreasing). In the first phase of vein type rodingites, the abundance order of minerals is Diopside, Chlorite, Idocrase, and Garnet (Ti-Andradite), and in the second phase is Diopside, Chlorite and Garnet (Andradite). Petrography and geochemical study of minerals show that, during the formation of massive type rodingites, the activity of Calcium, Iron, and Chromium ions in fluids, and during the formation of first phase of vein type rodingites, the activity of Calcium, Silicon, Magnesium, Aluminum, Titanium, and OH- ions in fluids, have been increased. Geochemistry of second phase of vein type rodingites is similar to first phase, but because of absence of Idocrase, and low Titanium in Andradite structure, the activity of Iron, Titanium, and Aluminum ions, is lower than first phase. Generally the diversity of minerals in massive type rodingites is more than vein type rodingites.

کلیدواژه‌ها [English]

  • : Mineralogy
  • Geochemistry
  • ophiolite
  • Serpentinized mantle peridotite
  • Dikes
  • Intrusives
  • Rodingites
[1] Dubińska E., “Rodingites of the eastern part of Jordanów-Gogołów serpentinite massif (Lower Silesia, Poland)” Canadian Mineralogist,

V. 33(3), (1995), 585-608.

[2] Dubińska E. “Rodingites and amphibolites from the serpentinites surrounding Góry Sowie block (Lower Silesia, Poland), Record of supra-subduction zone magmatism and serpentinization, Neues Jahrbuch fur Mineralogie und Petrologie”, Abhandlungen, V. 171(3), (1997), 239-279.

[3] Dubinska E., Wiewiora A., “Layer silicates from a rodingite and its blackwall from Przemilow (lower Silesia, Poland): mineralogical record of metasomatic processes during serpentinization and serpentinite recrystallization”, Mineralogy and Petrology 67 (1999) pp. 223-237.

[4] Hatzipanagiotou K., Tsikouras B., Migiros G., Gartzos E., Serelis K., “Origin of rodingites in Ultramafic rocks from Lesvos Island (NE Aegean, Greece)”, Ofioliti 28(1) (2003) pp. 13-23.

[5] Plyusnina L.P., Likhoidov G.G., Zaraisky G.P., “Physico-chemical conditions of rodingite formation (experimental data)”, Petrology (Moscow) 1 (1993) pp. 491-501.

[6] Schandl E.S., O'Hanley D.S., Wicks F.J., “Fluid inclusions in rodingite: a geothermometer for serpentinization”, Economic Geology 85 (1990) pp. 1273-1276.

[7] Hatzipanagiotou K., Tsikouras B., “Rodingite formation from diorite in the Samothraki ophiolite, NE Aegean, Greece”, Geological Journal 36 (2001) pp. 93-109.

[8] Lensch G., Davoudzadeh M., “Ophiolites in Iran”, N. Jb. Geol. Palaont. Mh., Stuttgart (1982) pp. 306-320.

[9] Likhoidov G.G., Plyusnina L.P., “Rodingites as a special case of water-rock interaction. In: Water-Rock Interaction”, Balkema, Rotterdam (1995) pp. 805-808.

[10] Irving A.J., Ashley P.M., “Amphibole-Olivine-Spinel, Cordierite-Anthophyllite and related hornfelses associated with metamorphosed serpentinites in the Goobarragandra District, near Tamut, New South Wales”, J. Geol. Soc. Aust. 23 (1976) pp. 19-43.

[11] Reyer D., Mohafez S., “The first contribution of the NIOC-ERAP agreements to knowledge of Iranian geology”, Edition techniq, Paris (1972) p. 58.

[12] Davoudzadeh M., Amidi M., “Geological quadrangle map of Anarak 1/250,000”, geological survey of Iran (unpublished) (1975).

[13] Davoudzadeh M., Soffel H., Schmidt K., “On the rotation of the Central-East Iran microplate”, N. Jb. Geol. Palaont. Mh. 3 (1981) pp. 180-192.

[14] Irving A.J., Ashley P.M., “Amphibole-Olivine-Spinel, Cordierite-Anthophyllite and related hornfelses associated with metamorphosed serpentinites in the Goobarragandra District, near Tamut, New South Wales”, J. Geol. Soc. Aust. 23 (1976) pp. 19-43.

[15] Technoexport, “Geology of the Anarak area (Central Iran)”, Geological Survey of Iran, Report TE/No. 19 (1984).

[16] Weber-Diefenbach K., Davoudzadeh M., Alavi-Tehrani N., Lensch G., “Paleozoic Ophiolites of Iran, geology, geochemistry and geodynamic implication”, Ofioliti 11(3) (1986) pp. 305-338.

]17[ باقری ساسان، ”بررسی زمین شناسی و پترولوژی سنگهای افیولیتی شمال انارک“، دانشگاه اصفهان، پایان نامه کارشناسی ارشد پترولوژی (1373).

]18[ پهلوان فلاحت احمد، ”بررسی پترولوژی سنگهای دگرگونی منطقه انارک“، دانشگاه اصفهان، پایان نامه کارشناسی ارشد پترولوژی (1373).

[19] Almasian M., “Tectonics of the Anarak area (Central Iran)”, Islamic Azad University, Science and Research Unit., PhD thesis (1997).

]20[ ترابی قدرت، ”بررسی رودینگیتی شدن دینامیک و کانی شناسی آن در بخشی از سنگ های افیولیتی شمال انارک (شمال شرق استان اصفهان)“، فشرده مقالات هشتمین همایش انجمن بلورشناسی و کانی شناسی ایران (1379) صفحه 357 تا 361.

[21] Sabzehei M., “Rodingitization in Iranian basic rocks: A new interpretation”, Journal of sciences, Islamic republic of Iran 13(2) (2002) pp. 155-160.

[22] Dubinska E., “Clinozoisitic rodingites from Naslawice near Sobótka (Lower Silesia)”, Archiwum Mineralogiczne 44 (1989) pp. 41-54.

[23] Palandri J.L., Reed M.H., “Geochemical models of metasomatism in ultramafic systems: Serpentinization, rodingitization, and sea floor carbonate chimney precipitation”, Geochimica et Cosmochimica Acta, Papers in Press (W2114) (2003).