خاستگاه اسکاپولیت در توده نفوذی پنج‌کوه (جنوب‌شرق دامغان)

نویسندگان

دانشگاه تهران

چکیده

مقاله حاضر به بررسی ترکیب کانی­شناسی و نحوه تشکیل بلورهای اسکاپولیت در ناحیه پنج کوه دامغان می پردازد. بر مبنای شواهد صحرایی و  بافتی،  دو نوع اسکاپولیت قابل تشخیص­اند: نوع اول شامل اسکاپولیتهایی است که در اندازه­های ریز تا درشت­دانه در بخشهایی از توده نفوذی جایگزین پلاژیوکلازها شده­اند. به نظر می­رسد که جریان شاره­های گرمابی غنی از NaCl، از عوامل تشکیل این کانی هستند. بلورهای نوع دوم اسکاپولیت به­صورت رگچه­های میلیمتری در داخل توده نفوذی و یا نوارهایی با ضخامت بیش از 5٠٠ متر در حاشیه توده نفوذی و حد  فاصل آن با گستره کانسار آهن پنج کوه مشاهده می‌شود. رشد این درشت بلورها از طریق نهشت مستقیم از شاره گرمابی در رگه‌هاست. حضور گسترده اسکاپولیت - آلبیت در داخل و به­ویژه حدفاصل توده نفوذی با یک دنباله نهشتی- آتشفشانی که میزبان کانسار آهن پنج کوه است،‏ نشان می­دهد که تشکیل اسکاپولیت با یک دگرنهادی آلکالی همراه بوده و بخش عمده­ای از سدیم و کلر مورد نیاز برای تشکیل این کانی از نهشته­های تبخیری موجود در این دنباله تأمین شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Origin of scapolite in plutonic rocks of Panj – Kuh (south-east of Damghan)

چکیده [English]

The mineralogy and origin of the scapolite crystals of the          Panj-Kuh area (S-E Damghan) has been investigated. Based on textural and field observations, two types of scapolite have been identified. Type 1 scapolite consists of fine to coarse grain crystals which are mainly replaced for plagioclase in the pluton body. The type 2 as veinlet and vein ranging in thickness from few milimeters inside the body to about few hundred meters in the margin of the body that present close to the iron ore deposit. It seems that the formation of the first type of scapolites is related to the circulation of NaCl rich fluid around of the intrusive body, and the second type has directly been precipitated from the hydrothermal fluids. The extensive aboundance of scapolite-albite zone in intrusive rocks and specially between body and a volcano-sedimentary sequence suggest that the formation of scapolite was accompanied by an alkali metasomatism which has been derived from the evaporate sediments of that sequences.

کلیدواژه‌ها [English]

  • mineralogy
  • scapolite
  • Panj – Kuh
  • Damghan
  • alkali metasomatism
[1] AITKEN B.G., "T-XCO2 stability relations and phase equilibria of a calcic carbonate scapolite", Geochim. Cosmochim. Acta 47 (1983) 351-362.

[2] ORVILLE P.M., "Stability of scapolite in the system Ab-An-NaCl-CaCO3 at 4 kbar and 750 °C", Geochim.Cosmochim. Acta 39 (1975) 1091-1105.

[3] LIEFTINK D.J., NIJLAND T.G., MAIJER C., "Clrich scapolite from Ødergärdens", Verk, Bamble, Norway", Nordsk Geologisk Tidsskrift 73 (1993) 55–57.

[4] TEERSTRA D.K., SCHINDLER M., SHERRIFF B.L., HAWTHORNE F.C., "Silvialite, a new sulfatedominant member of the scapolite group with an Al- Si composition near the I4/m-P42/n phase transition", Mineral Mag. 63/3 (1999) 321-329.

[5] WHITE A.J.R., "Scapolite-bearing marbles and calc-silicate rocks from Tungkillo and Milendella", South Australia.", Geol. Mag. 96 (1959) 285-306.

[6] SHAW D.M., "The geochemistry of scapolite, Part II. Trace elements, petrology and general geochemistry", J. Petrol. 1 (1960b) 261-285.

[7] LOVERING J.F., WHITE A.J.R., "The significance of primary scapolite in granulitic inclusions from deep seated pipes", J. Petrol. 5 (1964) 195–218.

[8] STOLZ A., "Fluid activity in the lower crust and upper mantle: mineralogical evidence bearing on the origin of amphibole and scapolite in ultramafic and mafic granulite xenoliths", Mineral. Mag. 51 (1987) 719-732.

[9] DAWSON J.B., "Advances in kimberlite geology", Earth-Science Reviews 7 (1971) 187-214.

[10] GOFF F.E., ARNEY B.H., EDDY A.C., "Scapolite phenocrysts in a latite dome, northwest Arizona, USA", Earth Planet. Sci. Lett. 60 (1982) 86-92.

[11] KERRICK D.M., CRAWFORD K.E., RANDAZZO A.F., "Metamorphism of calcareous rocks in three roof pendants in the Sierra Nevada, California", J. Petrol. 14 (1973) 303-325.

[12] Arranz E., Lago M., Basti Jand Galé, "Hydrothermalscapolite related to the contact metamorphism of the Maladeta Plutonic Complex, Pyrenees: chemistry and genetic mechanisms", SCHWEIZ. MINERAL. PETROGR. MITT. 82 (2002) 101-119.

[13] Collins L.G., "Hydrothermal differentiation, Theophrastus Publication", S.A. Athens (1988) p. 382.

[14] Rudyard Frietsch, Pakka Tuisku, Olof MartinssonEarly, "Protrozoic Cu- (Au) and Fe ore deposits associated with regional Na- Cl melasomatism in nathern fennoscandia", ore geology Review 12 (1996) pp 1-34

[15] Serdyuchenko D.P., "Some Precambrian Scapolite bearing rocks evoloved from evaporates", Lithos 8 (1975) 1-7.



[16] Serdyuchenko D.P., "Boric–sedimentary–metamorphic formations", Editors volume: Voprosy Sedimentologil, Kongresu Copenhagen (1960) p. 132-140.

[17] Oteroom W.H., Gunter W.D., "Activity models for plagioclase and CO3 scapolites– an analysis of field and laboratory data", Am. J. Sci. 283-A (1983) 255–282.

[18] MOECHER D.P., ESSENE E.J., "Phase equilibria for calcic scapolite and implications of variable Al-Si disorder for P-T, T-XCO2, and a-X relations", J. Petrol. 31/5 (1990) 997-1024.

[19] REBBERT C.R., RICE J.M., "Scapolite-plagioclase exchange: Cl-CO3 scapolite solution chemistry and implications for peristerite plagioclase", Geochim. Cosmochim. Acta. 61/3 (1997) 555-567.

[20] KWAK T.A.P., "Scapolite compositional change in a metamorphic gradient and its bearing on the iden- tification of meta-evaporite sequences", Geol. 114/5 (1977) 343-354.

[21] Moine B., Sauvan P., Jarousse J., "Geochemistry of evaporite-bearing series: a tentative guide to the identification of metaevaporites", Contrib. Mineral. Petrol. 76 (1981) 401-412.

[22] Vanko D.A., Bishop F.C., "Occurrence and origin of marialitic scapolite in the Humboldt Lopolith, N.W. Nevada", Contrib. Mineral. Petrol. 81 (1982) 277- 289.

[23] Owen J.V., Greenough J.D., "Scapolite pegmatite from the Minas fault, Nova Scotia: tangible manifestation of Carboniferous, evaporite derived hydrothermal fluids in the western Cobequid highlands", Mineral. Mag. 63/3 (1999) 387-397.

[24] Shaw D.M., "The geochemistry of scapolite, Part I. Previous work and general mineralogy", J. Petrol. 1 (1960a)218-260.

[25] Mora C.I., Valley J.W., "Halogen-rich scapolite and biotite: implications for metamorphic fluid-rock interaction", Am. Mineral. 74 (1989) 721–737.

[26] Markl G., Piazolo S., "Halogen-bearing minerals in syenites and high-grade marbles of Dronning Maud Land, Antarctica: monitors of fluid compositional changes during late-magmatic fluidrock interaction processes", Contrib. Mineral. Petrol. 132 (1998) 246-268.

[27] Ellis D.E., "Stability and phase equilibria chloride and carbonate bearing scapolites at 750 ° and 4000 bar", Geochim. Cosmochim. Acta 42 (1978) 1271 1281.

[28] Huckenholz H.G., Seiberl W., "Occurrence of carbonate scapolites and their bearing on geothermometry of (high-temperature) granulite facies", 28'th Int. Geol. Congress, Abstracts, Vol. 2 (1989) 79-80.

[٢٩] هوشمندزاده ع.، علوی م.، حقی‌پور ع.، "تحول پدیده‌های زمین‌شناسی ترود"، سازمان زمین‌شناسی کشور، گزارش شمارهH5 (1357).