Determination of original carbonate mineralogy of Ilam Formation and recognition of boundary between Ilam and Sarvak Formations by geochemical data in the Peyon Anticline, North of Izeh

Abstract

The Ilam Formation (Santonian-Campanian) is a unit of Bangestan Group, which is overlain on the Sarvak Formation in Tang E-Rashid area, Peyon Anticline (18.5 Km North of Izeh). Due to similar lithology, recognition of the exact boundary between Ilam and Sarvak Formations in the study area was difficult. Thus it is not possible to determine boundary between these two formations based on petrographic evidence and field observations. Recognition of original carbonate mineralogy based on petrographic studies is difficult in ancient carbonate rocks, because aragonite (A) and high - Mg calcite (HMC) transformed to low Mg calcite (LMC) during diagenesis. In this study major and minor elements and carbon and oxygen isotopes values used to determine the original carbonate mineralogy of Ilam Formation in the Peyon Anticline. Bivariet plots of minor and major elements and oxygen and carbon isotopes values indicate that original carbonate mineralogy was aragonite in Ilam Formation. Elemental and isotopic compositions of Ilam carbonates also illustrate that they were affected by non-marine diagenesis in a closed system. Major and minor element variations (such as Sr, Sr/Ca, and Sr/Na) and oxygen and carbon isotopes were used to distinguish the boundary between Ilam and Sarvak Formations in the Peyon Anticline.

Keywords


[1] اسدی مهماندوستی ا.، آدابی م. ح.، "بررسی رخسارهای سازند ایلام و کاربرد آنالیزهای ایزوتوپی و عنصری در تشخیص مرز این سازند با سازند سروک در رخنمون تنگ رشید، کوه پیون ـ منطقه ایذه"، بیست و سومین گردهمایی علوم زمین (1383).

[2] امیری بختیار ح.، "تفسیربیواستراتیگرافی سازندهای سروک و ایلام در منطقه ایذه (شمال شرق خوزستان) و مقایسه آن با منطقه سمیرم"، رساله کارشناسی ارشد، دانشکده علوم زمین، دانشگاه تهران (1370).

[3] Adabi M. H., "Sedimentology and geochemistry of Upper Jurassic (Iran) and Precambrian (Tasmania) carbonates", Unpubl. Ph.D. Thesis, Uni. Tasmania, Australia (1996) 400.

[4] Adabi M. H., Rao C. P., "Petrographic and geochemical evidence for original aragonitic mineralogy of Upper Jurassic carbonates (Mozduran Formation), Sarakhs area, Iran", Sed. Geology 72 (1991) 253-267.

[5] Brand U., Veizer J., "Chemical diagenesis of a multicomponent carbonate system –1: trace elements", Jour. Sed. Petrology 50 (1980) 1219-1236.

[6] Dickson J. A. D., "A modified staining technique for carbonate in thin section" Natures 205 (1965) 287.

[7] James G. A., Wynd J. G., "Stratigraphic nomenclature of Iranian Oil Consortium Agreement area", AAPG Bulletin 49 (1965) 2182-2245.

[8] James N. P., Choquette P. W., "Diagenesis 9. Limestones- the meteoric diagenetic environment: Geosci ", Canada 11 (1984) 161-194.

[9] Kelth L. M. Weber J. N., "Carbon and oxygen isotopic composition of limestones and fossils: Geochim", Cosmochim. Acta, 28 (1964) 1787-1816.

[10] Land L. S., Hoops G. K., "Sodium in carbonate sediments and rocks: a possible index to the salinity of diagenetic solutions", Jour. Sed. Petrology, 43 (1973) 614-617.

[11] Lohmann K. C., "Geochemical patterns of meteoric diagenetic systems and their application to studies of paleokarst", In James, N.P., & Choquette, P.W., (eds.), Paleokarst: New York, Springer-Verlag (1988) 58-80.

[12] Marshall J. D., "Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation", Geol. Magazine 129 (1992) 143-160.

[13] Milliman J. D., "Marine Carbonates", New York, Springer-Verlag, (1974) 375.

[14] Rao C. P., "Geochemical differences between subtropical (Ordovician), temperate (Recent and Pleistocene) and subpolar (Permian) carbonates, Tasmania, Australia", Carbonates and Evaporites 6 (1991) 83-106.

[15] Rao C. P., "Modern Carbonates, tropical, temperate, polar: introduction to sedimentology and geochemistary", Arts of Tasmania. (1996) 206.

[16] Rao C. P., Adabi M. H., "Carbonate minerals, major and minor elements and oxygen and carbon isotopes and their variation with water depth in cool, temperate carbonates, western Tasmania, Australia", Mar. Geology, 103 (1992) 249-272.

[17] Veizer J., "Chemical diagenesis of carbonates: theory and application of trace element technique" In Arthur, M. A., Anderson, T.F., Kaplan, I.R., Viezer. J., and Land, L. S. (eds.): Stable Isotopes in Sedimentary Geology, Tulsa, Okla: Soc. Econ. Paleontol. Mineral. Short Course, No. 10 (1983) 31-1 to 3-100.

[18] Winefield P. R., Nelson C. S., Hodder A. P. W., "Discriminating temperate carbonates and their diagenetic environments using bulk elemental geochemistry", a reconnaissance study based on New Zealand Cenozoic limestones: Carbonates and Evaporites 11 (1996) 19-31.