بررسی بلور شناسی و ریختشناسی ذرات نانومتری پودر سنتز شده هیدروکسی آپاتیت

نویسندگان

دانشگاه شهرکرد

چکیده

اصلی ترین جزء معدنی سازنده استخوان و دندان است. این (HA) هیدروکسی آپاتیت
بیوسرامیک قابلیت رشد استخوان را زیاد می کند و هنگامی که بافتهای استخوان بر سطح این
سرامیک رشد میکنند با آن تشکیل یک پیوند شیمیایی محکم می دهند. در این کار پژوهشی
سنتز شده به وسیله میکروسکوپ الکترونی تابش میدانی جاروبی HA ریختشناسی پودر
مورد بررسی قرارگرفته است. علاوه بر این ترکیب فازی و مولکولی با FESEM
بررسی شدند. نتایج به دست آمده نشان (FTIR) و اسپکتروسکوپی فروسرخ XRD روشهای
با خلوص بالا تهنشین میشود. این HA می دهند که با استفاده از روش سنتز به کار رفته پودر
پودر دارای ذرات با ریختشناسی میله ای شکل کوتاه و متوسط ابعاد تقریبی طول و قطر ذرات
02 است. رها کردن ذرات معلق برای مدتی پس nm 022 و nm اولیه تهنشین شده، به ترتیب
از افزودن محلول اسیدی، باعث افزایش ابعاد، کاهش سطح ویژه ذرات و نیز بروز تغییراتی در
سنتز شده HA ریختشناسی و شکل آنها میشود. همچنین دیده شد که ذرات پودر
سمتگیریهای ویژهای دارند.

کلیدواژه‌ها


عنوان مقاله [English]

Crystallography and morphological study of synthesized hydroxyapatite nano-particles

چکیده [English]

Hydroxyapatite (HA), which is represented by the formula
Ca10(PO4)6(OH)2, is one of the inorganic components of the hard tissues of
living bodies such as bones, teeth, etc. HA is a calcium phosphate-based
bioceramic, which has been used in medicine and dentistry for more than 20
years because of its excellent biocompatibility with human tissues. The
precipitation process, considered here, can add orthophosphoric acid solution
to a calcium hydroxide solution. The precipitated powder samples were
examined by XRD, FTIR, SEM and FESEM (Field emission electron
microscopy) methods. The results revealed that the final precipitated powder
is HA and using SEM with high magnification showed that these HA
consists of small rod-like particles. In addition, the morphology and size of
the precipitated particles change during different stages of process. After
drying, these nano-particles tend to form small agglomerates.

کلیدواژه‌ها [English]

  • Nanomaterials
  • Bioceramics
  • Hydroxyapatite
  • Crystallography
  • morphology
  • Precipitation
[1] Hench L.L., Wilson J., "An introduction to bioceramics; Advances series

in ceramics", Vol.1, World Scientific Publication, (1993).

[2] Oguchi H., Hasting G.W., "In-vivo evaluation of hydroxyapatite sprayed

by different coating methods-One year after implantation", in Anderson

O.H., Happonen R.P. and Yli-Urpo A. (eds), Bioceramics,Vol.7,

Butterworth-Heinemann Ltd. (1994) pp. 215-221.

[3] Couteney-Harris R.G., Kayser M.V., Downes S., "Comparison of the

early production of extracellular matrix on dense hydroxyapatite and

hydroxyapatite-coated titanium in cell and organ culture", Biomaterials 16

(1995) pp. 489-495.

[4] Kay J.F., "Bioactive surface coatings for hard tissue biomaterials", in

Yamamura T., Hench L.L. and Wilson J. (eds), CRC Handbook of Bioactive

Ceramics, Vol. 2, CRC Press, Boca Raton, FL., USA. (1990) pp. 111-121.

[5] Hench L.L., "Bioactive ceramics: Theory and clinical applications", in

Anderson O.H., Happonen R-P. and Yli-Urpo A. (eds), Bioceramics,Vol.7,

Butterworth-Heinemann Ltd. (1994) pp. 3-14.

[6] Park J.B., "Biomaterials Science and Engineering", Plenum Press, New

York, 1990.

[7] Shackelford J.F., "Bioceramics; Current status and future trends", Mater.

Sci. Forum 293 (1999) pp. 99-106.

[8] Hench L.L., "Bioactive glasses and glass-ceramics: A perspective", in

Yamamuro T., Hench L.L., and Wilson J. (eds), CRC Handbook of

Bioactive Ceramics, Vol.1, CRC Press, Boca Raton, LA (1990) pp. 7-23.

[9] Lacout J.L., "Calcium Phosphate as Bioceramics", in Muster D. (ed.),

Biomaterials: Hard Tissue Repair and Replacement, Elsevier Science

Publishers B.V. (1992) pp. 81-95.

[10] Zyman Z., Ivanov I., Rochmistrov D., Glushko V., Tkachenko N., Kijko

S., "Sintering peculiarities for hydroxyapatite with different degrees of

crystallinity", J. of Biomedical Materials Research 54 (2001) pp.256-263.

[11] Cho J.W., Ioku K., Goto S., "Elimination of ion from aqueous solution

by using calcium hydroxide or ammonium phosphate solutions", J. of the

Ceramic Society of Japan 105, No.3 (1997) pp. 233-237.

[12] Binner, J.G.P., Reichert, J., "Hydroxyapatite filters for the removal of

heavy metal ions from aqueous solutions", in Thompson, D.P. and Mandal

H. (eds), 21th British Ceramic Proceeding, No.55 (1995) pp. 63-78.

[13] LeGeros R.Z., LeGeros J.P., "Calcium phosphate biomaterials in

medical applications", in Kokubo T., Nakamura T. and Miyaji F. (eds),

Bioceramics, Vol.9, Elsevier Science. Ltd. (1996) pp. 7-10.

[14] Wie M., Ruys A.J., Milthorpe, Sorrell C.C., "Solution ripening of

hydroxyapatite nanoparticles: Effects on electrophoretic deposition", J. of

Biomedical Materials Research, Vol.45, 1999: pp. 11-19.

[15] Leitao E., Barbosa M.A., de-Groot K., "Influence of substrate material

and surface finishing on morphology of the calcium-phosphate coatings",

Journal of Biomedical Materials Research 36 (1997) pp. 85-90.

[16] Kirkpatrick C.J., Mittermater C., "Theoretical and practical aspects of

testing potential biomaterials in-vitro", J. of Materials Science: Materials in

Medicine1, No.1 (1990) pp. 9-13.

[17] Gibson I.R., Bonfield W., "Novel synthesis and characterization of an

AB -type carbonate –substituted hydroxyapatite", J. of Biomedical Materials

Research 59 (2002) pp. 697-708.

[18] Han Y., Xu K., Montay G., Fu T., Lu J., "Evaluation of nanostructured

carbonated hydroxyapatite coatings formed by a hybrid process of plasma

spraying and hydrothermal synthesis", J. of Biomedical Materials Research

60 (2002) pp. 511-516.