The distinctive trace elements signature of the less-evolved MORB materials in the south of Birjand ophiolites

Abstract

Mafic rocks including basalts and gabbros are the main constituents of Birjand ophiolites. They are found in several places and show low grade metamorphism in the field and under the microscope. Chondrite-normalized REE patterns for basalts and gabbros indicate that these rocks are transitional-enriched to depleted mid-oceanic ridge basalts respectively. Otherwise, N-MORB normalized trace elements patterns for basalts and gabbros are considered to be enriched in some LIL elements. Depletion in Ti and also in Nb (in gabbros) is other characteristic of these rocks. Therefore an incomplete short-lived subduction regime for generation of those heterogeneities can be suggested. The primary mantle-normalized trace elements pattern for Birjand harzburgite also confirms some LIL enrichments.

Keywords


[1] Stocklin J., “Structural history and tectonics of Iran: a review”, Am. Assoc. Pet. Geol. Bull., 52 (1968)1229– 1258.

[2] Tirrul R., Bell I.R., Griffis R.J., Camp V.E., “The Sistan Suture Zone of eastern Iran”, Geol. Soc. Amer. Bull., 94 (1983) 134– 150.

[3] Berberian M., King G.C.P., “Towards a paleogeography and tectonic evolution of Iran”, Can. J. Earth Scie., 18 (1981) 210-265.

[4] Ohanian T., “The Birjand ophiolite: an interacontinental transform structure, Eastern Iran”, Geodynamic project (Geo-traverse) in Iran, Report No.51 (1983) 239-245.

[5] Moazzen M., Modjarrad M., Zarrinkoub M.H., “Mineral chemistry, petrogenesis and P–T conditions of formation of harzburgitic peridotites from south of Birjand, Eastern Iran”, J. Asian Earth Sciences, (2006) 1–11.

[6] Zarrinkoub M.H., Amini S., Aftabi A., Karimpour M.H., “Mineralogy, geochemistry, structural position and a genetic model for listvenite in east of Iran”, Iranian J. Cryst. Mineral., 13, 2 (2005) 363-378.

[7] Fotoohi Rad G.R., Droop G.T.R., Amini S., Moazzen M., “Eclogites and blueschists of the Sistan suture zone, eastern Iran: a comparison of P-T histories from a subduction mélange”, Lithos, 84 (2005) 1-24.

[8] Ohanian T., Tatevosian S., “Geological map of Birjand, 1/100000 series, sheet 7855”, Geological Survey of Iran (1978).

[9] Shervais J.W., “Ti-V plots and the petrogenesis of moderns and ophiolitic lavas”, Earth Planet. Sci. Lett., 59 (1982) 101-118.

[10] Sun S.S., McDonough W.F., “Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes”, In: Saunders A.D., Norry M.J. (Eds.), Magmatism in Ocean Basins. Geol. Soc. Spec. Publ., London, (1989) pp. 313–345.

[11] Ando S., “Minor element geochemistry of the rocks from Mashu volcano, eastern Hokkaido”, J. Fac. Sci., Hokkaido University SerIV, 16 (1975) 553-566.

[12] Barker F., Peterman Z.E., “Bimodal tholeitic-dacitic magmatism and the early Precambrian crust”, Precambrian Research, 1 (1974) 1-12.

[13] Bideau D., Hekinian R., “A dynamic model for generating small-scale heterogeneities in ocean floor basalts”, J. Geophys. Res., 100, B7 (1995), 10,141-10-162.

[14] McDonough W.F., Sun S.S., “The composition of the Earth”, Chemical Geology, 120 (1995) 223-253.

[15] Bryan W.B., Thompson G., Michael P.J., “Compositional variation in steady state magma chamber: Mid-Atlantic Ridge at 36o50’N”, Tectonophysics, 55 (1979) 63-85.

[16] Hekinian R., Walker D., “Diversity and spatial zonation of volcanic rocks from the East Pacific Rise near 21oN”, Con. Min. Pet., 96 (1987) 265-280.

[17] Pallister J.S., Hopson C.A., “Samail ophiolite plutonic suite: Field relations, phase variation, cryptic variation and layering, and a model of a spreading ridge magma chamber”, J. Geophys. Res., 86 (1981) 2593-2644.

[18] Hawkesworth C. J., Hergt J. M., McDermott F., Ellam R. M., “Destructive margin magmatism and the contributions from the mantle wedge and subducted crust”, Australian J. Earth Sci., 38 (1991), 577-594.

[19] Gill J.,“Orogenic andesites and plate tectonics”, Springer-Verlag, 390 P.

[20] Kay R.W., “Volcanic arc magmas: implications of a melting-mixing model for element recycling in the crust-upper mantle system”, J. Geology, 88 (1980) 497-522.

[21] Hawkesworth C.J., “Isotope characteristics of magmas erupted along destructive plate margins”, In: Thorpe R.S. (Ed.), Andesites: orogenic andesites and related rocks, 549-571 (1982), John Wiley & Sons, London.

[22] Arculus R.J., Powell R., “Source component mixing in the regions of arc magma generation”, J. Geophys. Res., 91, B6 (1986) 5913-5926.

[23] Pearce J.A., “Role of the sub-continental lithosphere in magma genesis at active continental margins”, In: Hawkesworth C.J., Norry M.J., (Eds.), Continental basalts and mantle xenoliths, 230-249 (1983) Shiva Publishing Ltd., Nantwich, Cheshire.

[24] Hekinian R., Thompson G., Bideau D., “Axial and off-axial heterogeneity of basaltic rocks from the East Pacific Rise at 12o35’N-12o51’N and 11o26’N-11o30’N”, J. Geophys. Res., 94 (1989) 17,437-17,463.

[25] Prinzhofer A., Lewin E., Allegre C.J., “Stochastic melting of the marble cake mantle: evidence from local study of the East Pacific Rise at 12o50’N”, Earth Planet. Sci. Lett., 92 (1989) 189-206.

[26] Parkinson I.J., Pearce J.A., “Peridotites from the Izu-Bonin-Mariana forearc (ODP Leg 125): evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting”, J. Petrol., 39 (1998) 1577-1618.