ویژگی‌های زمین‌شناسی-کانی‌شناسی و ژئوشیمی عناصر کمیاب در نهشته بوکسیت آغاجری، جنوب شاهین‌دژ، شمالغرب ایران

نویسندگان

1 دانشگاه تبریز

2 دانشگاه پیام نور تبریز

چکیده

نهشته بوکسیت آغاجری در 15 کیلومتری جنوب شاهین­دژ، استان آذربایجان­غربی واقع شده است. این نهشته به صورت عدسیهای چینه­سان در مرز بین سازندهای کربناتی روته و الیکا گسترش یافته است. فرایندهای بوکسیتی شدن منجر به تشکیل کانیهای بوهمیت، دیاسپور، کائولینیت، پیروفیلیت، ایلیت، هماتیت، گوتیت، آناتاز، روتیل، و کوارتز در این نهشته شده­اند. ساز و کار­های­ آهن­زایی و آهن­زدایی، دو فاکتور مهم توزیع عناصر در این نهشته هستند. سنگهای آذرین مافیک پروتولیت نهشته احتمالی می­باشند. یافته­های بدست آمده نشان می­دهند که عناصر Al، Ti، Fe، Zr، Hf، REE، و Nb از افقهای بالایی به بخش­های پایینی سیستم بازمانده با کمپلکس­های آلی طی فرایندهای کائولینیتی شدن منتقل شده­اند. سنگهای بستر کربناتی نقش دوگانه­ای در توزیع عناصر در این نهشته ایفا کرده­اند. این سنگها با خنثی سازی آبگونهای هوازده اسیدی، موجب افزایش ته­نشستی اکسیدها و هیدروکسیدهای آهن شده که به نوبه خود بواسطه جذب سطحی­، باعث تمرکز قابل ملاحظه Cr، Co و LREE در بخشهای پایینی افق بوکسیتی شده­اند. از طرف دیگر کربناتها با تشکیل کمپلکسهای یونی پایدار با HREE باعث زهکشی این عناصر از سیستم بازماندی شده­اند.

کلیدواژه‌ها


عنوان مقاله [English]

Geological - mineralogical characteristics and trace-elements geochemistry in Aghadjari bauxite deposit, south of Shahindezh, NW of Iran

چکیده [English]

Aghadjari bauxite deposit is located in ~15km south of Shahindezh, West-Azarbaidjan province. This deposit was developed as stratiform lenses along the contact of Rutheh and Elika carbonate formations. Bauxitization processes led to the formation of boehmite, diaspore, kaolinite, pyrophyllite, illite, hematite, goethite, anatase, rutile, and quartz. Ferrugenization and deferrugenization mechanisms are two important factors controlling distribution of elements in this deposit. Mafic igneous rocks are the potential protolith. Obtained data show that elements such as Al, Ti, Fe, Zr, Hf, REE, and Nb moved down from the upper horizons to the lower parts of residual system by organic complexes during kaolinization processes. The carbonate bedrocks played dual roles in distribution of elements in this deposit. These rocks neutralized the acidic weathering solutions causing an increase in deposition of iron oxides and hydroxides which in turn due to their adsorption capacity caused considerable concentration of Cr, Co, and LREE in lower parts of the bauxite horizon. On the other hand, the carbonates by forming stable ionic complexes with HREEs caused these elements to drain out of the residual system.

کلیدواژه‌ها [English]

  • Buaxite
  • immobile elements
  • lateritization
  • Adsorption
  • Aghadjari
  • Shahindezh
[1] خلقی خسرقی م.ح.، اقلیمی ب.، امینی آذر ر.، علوی نائینی م.، " نقشه زمین شناسی تکاب- شاهین‌دژ به مقیاس 1:100000"، انتشارات سازمان زمین شناسی و اکتشافات معدنی کشور، (1373).

[2] Alavi-Naini M., Hajian J., Amidi A., Bolurrchi H., "Geology of Tekab-Saein Qale: Explanatory note of 1:250000 map of Takab guardrangle", Geological Survey of Iran, Report No 50 (1982).

[3] محمدیان ج.، "بررسی زمین شناسی اقتصادی بوکسیت‌های شرق شاهین دژ"، رساله کارشناسی ارشد زمین شناسی اقتصادی دانشگاه آزاد واحد تهران شمال (1376) 156ص.

[4] خواجه محمدلو ن.، " کانی‌شناسی، ژئوشیمی و ژنز نهشته‌های بوکسیتی جنوب استان آذربایجان‌غربی و تعیین کاربری آنها"، رساله کارشناسی ارشد زمین‌شناسی اقتصادی دانشگاه شهید بهشتی، (1383) 138ص.

[5] Vires J., Wasserburg G.J., "Behavior of Sm and Nd in a lateritic soil profile", Geochim et Cosmochim Acta 68 (2004) 2043-2054.

[6] Laskou M., Economou-Eliopoulos M., "The role of microorganisms on the mineralogical and geochemical characteristics of the Parnassos-Ghiona bauxite deposits, Greece", Journal of Geochemical Exploration 93 (2007) 67-77.

[7] Calagari A.A., Abedini A., "Geochemical investigations on Permo-Triassis bauxite deposit at Kanisheeteh, east of Bukan, Iran", Journal of Geochemical Exploration 94 (2007) 1-18.

[8] Bardossy G., "Karst Bauxites", Elsevier Scientific, Amsterdam, (1982) 1- 441.

[9] Boulange B., Bouzat G., Pouliquen M., "Mineralogical and geochemical characteristics of two bauxitic profiles, Fria, Guinea republic", Mineralium Deposita 31 (1996) 432-438.

[10] Balkay B., Bardossy G.Y., "Lateritesedesi rezfolyam ant vizsgalatok guineai lateritekben (Study of partial processes of laterization on Guinean laterites)", Foldt. Kozl. Budapest 97 (1967) 91-100.

[11] Mongelli G., "Ce-anomalies in the textural components of Upper Cretaceous karst bauxites from the Apulian carbonate plateform (southern Italy)", Chemical Geology 140 (1997) 69-79.

[12] MacLean W.H., Bonavia F.F., Sanna G., "Argillite debris converted to bauxite during karst weathering: evidence from immobile element geochemistry at the Olmedo deposit, Sardinia", Mineralium Deposita 32 (1997) 607-616.

[13] Mameli P., Mongelli G., Oggiano G., Dinelli E., "Geological, geochemical and mineralogical features of some bauxite deposits from Nurra (western Sardinia, Italy): insights on conditions of formation and parental affinity", International Journal of Earth Sciences 96 (2007) 887-902.

[14] Valeton I., Biermann M., Reche R., Rosenberg F., "Genesis of nickel laterites and bauxites in Greece during the Jurassic and Cretaceous, and their relation to ultrabasic parent rocks", Ore Geology Review 2 (1987) 359-404.

[15] Schellmann W., "A new definition of laterite. In: Banerji, P.K. (Ed.), Laterization processes", Geological Survey of India, Memoir 120 (1986) I1-I7.

[16] Maksimovic Z., Panto G.Y., "Contribution to the geochemistry of the rare earth elements in the karst-bauxite deposits of Yogoslavia and Greece", Geoderma 51 (1991) 93-109.

[17] Mucke A., Badejoko T.A., Akande S.O., "Petrographic-microchemical studies and origin of the Agbaja Phanerozoic Ironstone formation, Nupe Basin, Nigeria: a product of ferruginized ooidal Kaolin precursor not identical to the Minette-type", Mineralium Deposita 34 (1999) 284-296.

[18] Taylor S.R., McLennan S.M., "The continental crust: its composition and evolution", Blackwell, Oxford, (1985) 1-312.

[19] Price R.G., Gray C.M., Wilson R.E., Frey F.A., Taylor S.R., "The effects of weathering on rare earth element, Y and Ba abundances in Tertiary basalts from southern Australia", Chemical Geology 93 (1991) 245-265.

[20] Boulange B., Colin F., "Rare earth element mobility during conversion of nepheline syenite into lateritic bauxite at Passa Quatro, Minais-Gerais, Brazil", Applied Geochemistry 9 (1994) 701-711.

[21] Middleburg J.J., Van Der Weijden C.H., Woittiez J.R.W., "Chemical processes affecting the mobilities of major, minor and trace elements during the weathering of granitic rocks", Chemical Geology 68 (1988) 253–273.

[22] Patino L.C., Velbel M.A., Price J.R., Wade J.A., "Trace element mobility during spheroidal weathering of basalts and andesites in Hawaii and Guatemala", Chemical Geology 202 (2003) 343-364.

[23] Aubert D., Stille P., Probst A., "REE fractionation during granite weathering and removal by waters and suspended loads: Sr and Nd isotopic evidence", Geochimica et Cosmochimica Acta 65 (2001) 387-406.

[24] Braun J.J., Pagel M., Muller J.P., Bilong P., Michard A., Guillet B., "Ce anomalies in lateritic profiles", Geochimica et Cosmochimica Acta 54 (1990) 781-795.

[25] White A.F., Bullen T.D., Schultz M.S., Blum A.E., Huntington T.G., Peters N.E., "Differential rates of feldspar weathering in granitic regoliths", Geochim et Cosmochim Acta 65 (2001) 847-869.

[26] Parker A., "An index of weathering for silicate rocks", Geological Magazine 107 (1970) 501-504.

[27] Nesbitt H.W., "Mobility and fractionation of rare earth elements during weathering of a granodiorite", Nature 279 (1979) 206-210.

[28] Harnois L., "The CIW index: a new chemical index of weathering", Sedimentary Geology 55 (1988) 319-322.

[29] Nesbitt H.W., Wilson R.E., "Resent chemical weathering basalts", American Journal of Earth Science 292 (1992) 740-777.

[30] Patino L.C., Velbel M.A., Price J.R., Wade J.A., "Element redistribution during weathering of volcanic rocks in sedimentary landscapes", Geochimica et Cosmochimica Acta 69 (2005) A683.

[31] Brimhall G.H., Lewis C.J., Ford C., Bratt J., Taylor G., Warin O., "Quantitative geochemical approach to petrogenesis: importance of parent material reduction, volumetric expansion, and eolian influx in lateralization", Geoderma 51 (1991) 51-91.

[32] Nahon D., Merino E., "Pseudomorphic replacement versus dilation in laterites: petrographic evidence, mechanisms, and consequences for modeling", J. of Geochemical Exploration 57 (1996) 217-225.

[33] Braun J.J., Pagel M., Herbillon A., Rosin C., "Mobilization and redistribution of REEs and Th in a syenitic lateritic profile- a mass balance study", Geochimica et Cosmochimica Acta 57 (1993) 4419-4434.

[34] Dupre B., Vires J., Dandurand J.L., Polve M., Benezeth P., Vervier P., Braun J.J., "Major and trace elements associated with colloids in organic-rich river waters: ultrafiltration of natural and spiked solutions", Chemical Geology 160 (1999) 63-80.

[35] Oliva P., Vires J., Dupre B., Fortune J.P., Martin F., Braun J.J., Nahon D., Robain H., "The effect of organic matter on chemical weathering: study of a small tropical watershed: Nsimi-Zoetele site, Cameroon", Geochimica et Cosmochimica Acta 63 (1999) 4013-4035.

[36] Braun J.J., Ngoupayou J.R.N., Vires J., Dupre B., Bedimo J.P.B., Boeglin J.L., Robain H., Nyeck B., Freydier R., Nkamdjou L.S., Rouiller J., Muller J.P., "Present weathering rates in a humid tropical watershed: Nsimi, South Cameroon", Geochimica et Cosmochimica Acta 69 (2005) 357-387.

[37] Vires J., Dupre B., Braun J.J., Deberdt S., Angeletti B., Ngoupayou J.N., Michard A., "Major and trace element abundances, and Sr isotopes in the Nyong basin rivers (Cameroon): constraints on chemical weathering processes and elements transport mechanisms in humid tropical environments", Chemical Geology 169 (2000) 211-241.

[38] Brookins D.G., "Eh-pH diagrams of REE at 25°C and one bar pressure", Geochemical Journal 17 (1983) 223–229.

[39] Koppi A.J., Edis R., Foeld D.J., Geering H.R., Klessa D.A., Cockayne D.J.H., "REEs trends and Ce-U-Mn associations in weathered rock from Koongarra, northern territory, Australia", Geochimica et Cosmochimica Acta 60 (1996) 1695-1707.

[40] Yan X., Kerrich R., Hendry M.J., "Distribution of the REEs in porewaters fron a clay-rich aquitard sequence, Saskatchewan, Canada", Chemical Geology 176 (2001) 151-172.

[41] Condie K., "Another look at REEs in shales", Geochimica et Cosmochimica Acta 55 (1991) 2527-2531.

[42] Duddy L.R., "Redistribution and fractionation of REEs and other elements in a weathering profile", Chemical Geology 30 (1980) 363-381.

[43] Banifield J.F., Eggleton R.A., "Apatite replacement and REE mobilization, fractionation, and fixation during weathering", Clays and Clay Minerals 37 (1989) 113-127.

[44] Rankin P.C., Childs C.W., "REEs in Fe-Mn concretions from some New Zealand solis", Chemical Geology 18 (1976) 55-64.

[45] Pokrovsky O.S., Schott J., Dupre B., "Trace element fractionation and transport in boreal rivers and soil porewaters of permafrost-domonated basaltic terrain in Central Siberia", Geochimica et Cosmochimica Acta 70 (2006) 3239-3260.

[46] Kuhnel R.A., "The role of cationic and anionic scavengers in laterites", Chemical Geology 60 (1987) 31-40.

[47] Coppin F., Berger G., Castet S., Loubet M., "Sorption of lanthanides on smectite and kaolinite", Chemical Geology 182 (2002) 57-68.