Mineralogy and stable isotope geochemistry of hydrothermally altered volcanic rocks in SE of Kashan

Abstract

The submarine volcanic rocks of Totmaj volcano-sedimentary sequence, located at 25 Km southeast of Kashan city, have suffered extensive non-uniform propylitization. Based on field and petrographical studies, the volcanic rocks can be classified into three alteration zones: chlorite-epidote zone, epidote zone and hematite zone. The secondary hydrothermal minerals formed in the volcanic rocks include epidote-chlorite, calcite and hematite. These minerals have pseudomorphly replaced the primary phenocrysts (e.g. plagioclase, amphibole, and pyroxene) or have filled veins and vesicles. Stable carbon and oxygen isotope analysis of the hydrothermal calcite indicate that the δ18O and δ13C values range from -9.2 to -11.3 and -2.02 to -6.02 per mil respectively. Thus, seawater has been a source for hydrothermal fluid which by circulation into the hot submarine lavas, caused to leaching of some elements such as Fe and Mg from the altered rocks with the exception of epidote-chlorite zone. Also, the seawater circulation leads to an increase in Na ratio in the rocks. Geothermometrical studies on hydrothermal chlorite showed that these minerals have formed at a temperature between 240 to 300˚C. Furthermore, the ranges of temperature stability of coexisting secondary minerals in the volcanic rocks are compatible with those of the green schist facies.

Keywords


[1] Stocklin J., "Geology of the area between Kashan, Ardestan, Isfahan. Iran oil Co", 108B, 13 (1954) 24.

[2] Pourhosseini F., "Petrogenesis of Iranian plutons: a study of the Natanz and Bazman intrusive complexes", P.h.D. Thesis University of Cambridge (1981) p. 315.

[٣] علایی مهابادی س., خلعت بری جعفری م. (1377) نقشه زمین شناسی ١٠٠٠٠٠/١ چهار گوش نطنز. ورقه شماره نطنز.

[4] عمیدی س.م, امامی م.ه, زاهدی م., زهره‌بخش ع.م. (1356) "نقشه زمین شناسی ٢٥0٠٠٠/١ چهار گوش کاشان"، ورقه شماره F7.

[5] Morimoto N., Fabries J., Ferguson A.K., Ginzburg I.V., Ross M., Seifert F.A., Zussman J., Akoi K. and Gottardi. G., "Nomenclature of pyroxenes", Mineral. Mag. 65 (1988) 1-28.

[6] Fisher R.V., "Schmincke H.U Pyroclastic Rocks", Springer-Verlag, Berlin (1984) pp. 472.

[7] Loeblich A., Tappan H., "Foraminiferal genera and their classification", Van nostrand reinhold (1988).

[8] Titley S.R., Beane R.E., "Porphyry cooper deposits", Economic Geology 75th Ann. (1981) PP. 214-269.

[9] Marcelot G., Maury R.C. and Lefevre C., "Mineralgy of Erromango Lava New Hebride: Evidence of an early stage of fractionation in island arc basalts", Lithos 16 (1983) 135-151.

[10] Evans A.M., "Ore geology and industrial minerals: Blackwell-Sci", Pub. (1992) p.390.

]١١ [کریم‌پور م.ح., سعادت س.، "زمین‌شناسی اقتصادی کاربردی"، نشر مشهد, (١٣٨١) ٥٣٥ص.

[12] White N.C., Hedenquist J.W., "Epithermal gold deposits: styles, characteristics and exploration", Society of Economic Geologists Newsletter 23 (1995) 1-13.

[13] Skirrow R.G., Franklin J.M., "Silisification and Metal Leaching in Semiconformable alteration beneath the Chisel lake massive sulfide deposit, Snow lake, Manitoba", Economic Geology 89 (1994) 31-50.

[14] Seyfried W.E., Jr. Janecky D.R., "Heavy metal and sulfur transport during subcritical and supercritical hydrothermal alteration of basalt: Influence of fluid pressure and basalt composition and crystallinity", Geochimica et Cosmochimica Acta 49 (1985) 2545-2560.

[15] Dalstra H., Guedes S., "Giant hydrothermal hematite deposits with Mg-Fe metasomatism a comparison of the Carajas, Hamersley, and other Iron", Geology 99 (2004) pp. 1793–1800.

[16] Faure G., "Principles of isotope geology", 2nd Edition, John Wiley and Sons, New York, (1986) p.589.

[17] Ohmoto H., "Systematics of sulfur and carbon isotopes in hydrothermal ore deposits", Economic Geology 67 (1972) pp. 551-578.

[18] Ohmoto H., and Rye R.O., "Isotopes of sulfur and carbon". In H. L. Barnes, ed., Geochemistry of hydrothermal ore deposits, 2nd ed., John Wiley, New York (1979) p 798.

[19] Rollinson H.R., "Using geochemical data: evalution presentation interpretation", Longman group UK Ltd, (1993) p. 352.

[20] Hudson J.D., "Stable isotopes limestone lithification", Journal of Geological Society of London 133 (1977) 637-660.

[21] Baker A.J., Fallick A.E., "Evidence from Lewisian limestones for isotopically heavy carbon in two-thousand-million-year-old sea water", Nature 337 (1989) 352-354.

[22] Stakes D.S. and O’Neil J.R., "Mineralogy and stable isotope geochemistry of hydrothermally altered oceanic rocks", Earth and Planetary Science Letter 57 (1982) 285-304.

[23] Richardson C.K., Rye R.O., Wasserman M.D., "The chemical and thermal evolution of the fluids in the Cave-in-rock fluorspar district, Illinois: stable isotope systenmatics at the Deardorff mine", Economic Geology 83 (1988) 765-783.

[24] Wright I.P., Grady M.M., Pillinger C.T., "Carbon, Oxygen and nitrogen isotopic composition of possible martian weathering products in EETA 79001", Geochimica et Cosmochimica Acta 52 (1988) 917-924.

[25] Deines P., Gold D.P., "The isotope composition of carbonatite and kimberlite carbonates and their bearing on the isotope composition of deep seated carbon", Geochimica et Cosmochimica Acta 37 (1973) 1709-1733.

[26] Liou J.G., Seki Y., Guillemette R., Sakai H., "compositions and paragenesis of secondary minerals in the Onikobe geothermal system, Japan", Chemical Geology 49Z (1985) 1-37.

[27] Bucher, K., Frey, M., Petrogenesis of metamorphic rocks. Springer - Verlag, (1994) 318p.

[28] Cathelineau M., Nieva D., "A chlorite solid solution geothermometer, The Los Azufres (mexico) Geothermal system", Contribution to Mineralogy and Petrology 91 (1985) 235-244.

[29] Cathelineau M., "The Hydrothermal alkali metasomatism effect on granitic rocks: Quartz dissolution and related subsolidus changes", Journal of Petrology 27(1986) 945-956.

[30] Schiffman P., Fridleifsson G.O., "The smectite to chlorite transition in drillhole NJ-15, Nesjavellir Geothermal Field, Iceland: XRD, BSE, and electron microprobe investigations", Journal of Metamorphic Geology 9 (1991) 679–696.

[31] Caritat P., Hutcheon I., Walshe J.L., "Chlorite geothermometry:a review",Clay Mineralogy 41 (1993) 219_/239.

[32] Boyce A.J., Fulignati P., Sbrana A., "Deep hydrothermal circulation in a granite intrusion beneath Larderello geothermal area (Italy): constraints from .mineralogy, fluid inclusions and stable isotopes", Journal of Volcanology and Geothermal Research 126 (2003) 243-262.

[33] Bird D.K., Schiffman P., Elders W.A.,Williams AE., McDowell S.D., "calc-silicate mineralization in active geothermal system", Economic Geology 79 (1984) 671-695.

[34] Cho. M., Liou J.G., Maruyama S., "Transition from the zeolite to prehnite-pumpellyite facies in the Karmutsen metabasites ,Vancouver Island, British Columbia", Journal of Petrology 27 (1986) 467-494.

[35] Reyes A.G., "Petrology of Philippine geothermal systems and the application of alteration mineralogy to their assessment", Journal of Volcanology and Geothermal Research 43 (1990) 279–309.

[36] Balangue M.I.R.D., "Chemical reaction path modeling of hydrothermal mineralization in the Tongonan geothermal field, Leyte (Philippines)", Geothermics 33 (2004) 143-179.