Study of mineral chemistry and thermobarometry of Boland Parchin granitoids, NW Iran

Abstract

Field evidences, petrographic features and geochemical studies show that the garnet-muscovite granitoids of Boland Parchin area are S-type and they have sharp contact with the host rocks (metamorphic rocks). Granitoids of Boland Parchin contain minerals such as quartz, K-feldspars, plagioclase, biotite and Al-rich minerals (such as muscovite and garnet). Chemical composition of K-feldspars, plagioclase, biotite, muscovite and garnet in the studied samples show that K-feldspars are Or-rich component, plagioclase are Ab-rich, muscovite flakes are rich in the muscovite end-member, phlogopite-annite is the dominant constituent in biotite and chemical composition of the analysed garnets show that they are Alm-rich. Temperature and pressure have been calculated 600 °C and 5-8 Kbar respectively, for the formation of the granitoid rocks. All temperatures obtained from feldspar thermometry reflect sub-solidus re-equilibrium of the feldspars. Lack of equivalent extrusive rocks, existence of restitic micaceous enclaves (restitic biotite), mineralogical features (existence of muscovite and garnet) and chemical characteristics (peraluminous) indicate that Boland Parchin granitoids are S-type. Therefore the rocks are produced from partial melting of metapelites.

Keywords


[1] Saki A., Moazzen M., Modjtahedi M., Oberhänsli R., “Determination of P-T conditions of metamorphism of Mahneshan Complex, NW Iran”, Iranian Journal of Geoscinces and Mineralogy, (2007) Article IN PRESS.

[2] Babakhani A.R., Ghalamghash J., “Geological map of Iran, 1:100,000 series sheet Takht-e-Soleiman”, Geological Survey of Iran, Tehran. 1990.

[3] Hajalioghli R., Moazzen M., Droop G. T. R., Oberhancli R., Bousquoet.T R., Jahangiri A., Ziemman M., “Serpentine polymorphs and P-T evolution of metaperidotites and serpentinites in the Takab area”, NW Iran Mineralogical Magazine, April, 2007, Vol. 71(2), pp. 203–222.

[4] Nabavi M.H., “An Introduction to the Geology of Iran”, Geological Survey of Iran, 109 pp. (1976), (in Persian).

[5] Eftekhar Nejad J., “Tectonic classification of Iran in relation to depositional basins. Journal of Iranian Petroleum Society”, 82, 19_28 (in Persian) (1980).

[6] Alavi M., “Regional stratigraphy of the Zagros Fold-Thrust belt of Iran and its proforeland evolution”, American Journal of Science, 304, 1_20. (2004).

[7] Gilg H.A., Boni M., Balassone G., Allen C.R., Banks D., Moore F., “Marble-hosted sulfide ores in the Angouran Zn-(Pb_Ag) deposit, NW Iran: interaction of sedimentary brines with a metamorphic core complex”, Mineralium Deposita, 41, 1_16 (2006).

[8] Hamdi BP, “recambrian_Cambrian deposits in Iran. In: Treatise of the Geology of Iran (A. Hushmandzadeh, editor). Geological Survey of Iran, Tehran”, 20, 1-535. (1995).

[9] Ramezani J., Tucker R.D., “The Saghand region, central Iran: U-Pb geochronology, petrogenesis and implications for Gondwana tectonics”, [American Journal of Science, Vol. 303, September, 2003, P. 622–665].

[10] Stockli D.F., Hassanzadeh J., Stockli L.D., Axen G., Walker J.D., Dewane T.J., “Structural and geochronological evidence for Oligo-Miocene intraarc low-angle detachment faulting in the Takab- Zanjan area, NW Iran”, Abstract, Programs Geological Society of America, 36,319(2004).

[11] Saki A., Moazzen M., Abdolahi M., “Study of geochemical, geodynamic and source of granitoid of Boland Parchin area, NW Iran”, Proceeding of 26th symposium on Geoscinces, Tehran, Iran.

[12] Lambert R. St. J., “The mineralogy and metamorphism of the Moine schists of The Morar and Kroydart districts of Inverness-shire”, Transactions of the Royal Society of Edinburgh, (1959), 63, 553.

[13] Brown W. L., Parsons I., “Towards a more practical two-feldspar geothermometer”, Contribution to Mineralogy and Petrology, 76, 1981, 369-377.

[14] Haselton H. T., Hovis G. L., Hemingway B. S., Robie R.A., “Calorimetric investigation of the excess entropy of mixing in analbite-sanidine solid solutions: lack of evidence for Na, K short-range order and implication for two feldspar thermometry”, American Mineralogist. 1983, 68, 398-413.

[15] Bhattacharya A, Mohanty L, Maji A, Sen SK, Raith M., “Non-ideal mixing in The phlogopite-annite binary: constraints from experimental data

on Mg-Fe partitioning and a reformulation of the biotite-garnet thermometer”, Contrib Mineral Petrol (1992), 111: 87-93.

[16] Thompson AB., “Mineral reactions in pelitic rocks: II. Calculation of some P-T-X (Fe-Mg) phase relations”, American J. of Science, (1976), 276: 401-454

[17] Helffrich G, Wood B., “Subregular model for multicomponent solutions”, Am Mineral (1989), 74: 1016-1022

[18] Ganguly J., Saxena S., “Mixing properties of aluminosilicate garnets: constraints from natural and experimental data, and applications to geothermobarometry”, American Mineralogist, (1984) 69: 88-97.

[19] Hoisch TD, “Equilibria within the mineral assemblage Qtz+Ms+Bt+Grt+Pl and implications for the mixing properties of octahedrally-coordinated cations in Ms and Bt”, Contrib Mineral Petrol 108: (1991) 43-54.

[20] Seck H.A., “Der Einfluss des Drucks auf die Zusammensetzung Koexistierender Alkalifeldspat und Plagioklase im system NaAlSi3O8-KAlSi3O8-CaAl2Si2O8-H2O“, Contribution to Mineralogy and Petrology, 1971b, 31,67-86.

[21] Thompson AB, “Mineral reactions in pelitic rocks: II. Calculation of some P-T-X (Fe-Mg) phase relations”, American J. of Science, (1976) 276: 401-454

[22] Nadimi A., “Evolation of the Central Iranian basement”, Gondwana Research xx (2006) xxx-xxx. ARTICLE IN PRESS (2007).

[23] Saki A., Moazzen M., Moayyed M., “Geothermobarometry of metapelites of southwest Mahneshan”, Iranian Journal of Crystallography and Mineralogy, Vol 12, Num 2, (2004), 215-230.